
Linear equations

A system of n linear equations with m unknowns is generally written in the form

m
∑

j=1

Aijxj = bi , i = 1, . . . , n , (1)

where x1, x2, . . . , xm are the unknown variables, A11, A12, . . . , Anm are the (constant) coefficients of the
system, and b1, b2, . . . , bn are the (constant) right-hand side terms.

The system can be written in matrix form as

Ax = b . (2)

where A
.
= {Aij} is the n × m matrix of the coefficients, x

.
= {xj} is the size-n column-vector of the

unknown variables, and b
.
= {bi} is the size-m column-vector of right-hand side terms.

Systems of linear equations occur regularly in applied mathematics. The computational algorithms
for finding solutions of linear systems are therefore an important part of numerical methods.

A system of non-linear equations can often be approximated by a linear system, a helpful technique—
called linearization—in creating a mathematical model of an otherwise a more complex system.

If m = n, the matrix A is called square. A square system has a unique solution if A is invertible.

Triangular systems and back-substitution

An efficient algorithm to solve numerically a square system of linear equations is to transform the original
system into an equivalent triangular system,

Ty = c , (3)

where T is a triangular matrix: a special kind of square matrix where the matrix elements either below
or above the main diagonal are zero.

An upper triangular system can be readily solved by back substitution:

yi =
1

Tii

(

ci −
n
∑

k=i+1

Tikyk

)

, i = n, n − 1, . . . , 1 . (4)

For the lower triangular system the equivalent procedure is called forward substitution.
Note that a diagonal matrix—that is, a square matrix in which the elements outside the main diagonal

are all zero—is also a triangular matrix.

Reduction to triangular form

Popular algorithms for transforming a square system to triangular form are LU decomposition and QR

decomposition.

LU decomposition

LU decomposition is a factorization of a square matrix into a product of a lower triangular matrix L and
an upper triangular matrix U ,

A = LU . (5)

The linear system Ax = b after LU-decomposition of the matrix A becomes LUx = b and can be
solved by first solving Ly = b for y and then Ux = y for x with two runs of forward and backward
substitutions.

If A is a n × n matrix, the condition (5) is a set of n2 equations,

n
∑

k=1

LikUkj = Aij , (6)
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for n2 +n unknown elements of the triangular matrices L and U . The decomposition is thus not unique.
Usually the decomposition is made unique by providing extra n conditions e.g. by the requirement

that the elements of the main diagonal of the matrix L are equal one,

Lii = 1 , i = 1 . . . n . (7)

The system (6) can then be easily solved row after row using e.g. the Doolittle algorithm,

for i = 1 to n :
Lii = 1
for j = 1 to i− 1 :

Lij =
“

Aij −
P

k<j LikUkj

”

/Ujj

for j = i to n :
Uij = Aij −

P

k<i LikUkj .

QR decomposition

QR decomposition is a factorization of a matrix into a product of an orthogonal matrix Q, such that
QT Q = 1 (where T denotes transposition), and a right triangular matrix R,

A = QR . (8)

QR-decomposition can be used to convert the linear system Ax = b into the triangular form

Rx = QTb, (9)

which can be solved directly by back-substitution.
QR-decomposition can also be performed on non-square matrices with few long columns. Generally

speaking a rectangular n × m matrix A can be represented as a product, A = QR, of an orthogonal
n × m matrix Q, QT Q = 1, and a right-triangular m × m matrix R.

QR decomposition of a matrix can be computed using several methods, such as Gram-Schmidt
orthogonalization, Householder transformations, or Givens rotations.

Gram-Schmidt orthogonalization Gram-Schmidt orthogonalization is an algorithm for orthogo-
nalization of a set of vectors in a given inner product space. It takes a linearly independent set of
(column-)vectors A = {a1, . . . ,am} and generates an orthogonal set Q = {q1, . . . ,qm} which spans the
same subspace as A. The algorithm is given as

for i = 1 to m :
qi ← ai/‖ai‖ //normalization
for j = i + 1 to m :

aj ← aj − 〈aj, qi〉qi //orthogonalization .

where 〈a,b〉 is the inner product of two vectors, and ‖a‖ =
√

〈a,a〉 is the vector’s norm. This variant
of the algorithm, where all remaining vectors aj are made orthogonal to qi as soon as the latter is
calculated, is considered to be numerically stable and is referred to as stabilized or modified.

Stabilized Gram-Schmidt orthogonalization can be used to compute QR decomposition of a matrix
A by orthogonalization of its column-vectors ai with the inner product

〈a,b〉 = aT b ≡

n
∑

k=1

(a)k(b)k , (10)

where n is the length of column-vectors a and b, and (a)k is the kth element of the column-vector,

for i = 1 . . . m :
Rii = (aT

i ai)
1/2 ; qi = ai/Rii

for j = i + 1 . . . m :
Rij = qT

i aj ; aj = aj − qiRij .

The factorization is unique under requirement that the diagonal elements of R are positive. For a
n × m matrix the complexity of the algorithm is O(m2n).
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Table 1: QR decomposition in C++ using Armadillo matrices

#include<armadillo>

using namespace arma;
void qrdec(mat& A, mat& R)// QR-decomposition of matrix A (A is replaced with Q)
{

for(size_t i = 0; i < A.n_cols; i++){
double r = dot( A.col(i), A.col(i) );

R(i,i) = sqrt(r);
A.col(i) /= sqrt(r); //normalization
for(size_t j=i+1; j < A.n_cols; j++){

double s = dot( A.col(i), A.col(j) );
A.col(j) -= s*A.col(i); //orthogonalization

R(i,j) = s;
}

}
}

Householder transformation An n × n matrix H of the form

H = 1 −
2

uT u
uuT (11)

is called Householder matrix where the vector u is called a Householder vector. Householder matrices
are symmetric and orthogonal,

HT = H , HT H = 1 . (12)

The transformation induced by the Householder matrix on a given vector a,

a → Ha , (13)

is called a Householder reflection. The transformation changes the sign of the affected vector’s component
in the u direction, or, in other words, makes a reflection of the vector about the hyperplane perpendicular
to u, hence the name.

Householder transformation can be used to zero selected components of a given vector a. For example
one can zero all components but the first one, such that

Ha = γe1 , (14)

where γ is a number and e1 is the unit vector in the first direction. The factor γ can be easily calculated,

||a||2
.
= aT a = aT HT Ha = (γe1)T (γe1) = γ2 , (15)

⇒ γ = ±||a|| . (16)

To find the Householder vector, we notice that

a = HT Ha = HT γe1 = γe1 −
2u1

uT u
u , (17)

⇒
2u1

uT u
u = γe1 − a , (18)

where u1 is the first component of the vector u. One usually chooses u1 = 1 for the sake of the possibility
to store the other components of the Householder vector in the zeroed elements of the vector a; and
stores the factor

2

uT u
≡ τ (19)

separately. With this convention one readily finds τ from the first component of equation (18),

τ = γ − a1 . (20)

where a1 is the first element of the vector a. For the sake of numerical stability the sign of γ has to be
chosen opposite to the sign of a1,

γ = −sign(a1)||a|| . (21)
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Finally, the Householder reflection which zeroes all component of a vector a but the first,

H = 1 − τuuT , τ = −sign(a1)||a|| − a1 , u1 = 1 , ui>1 = −
1

τ
ai . (22)

A typical strategy to perform a QR-decomposition of a matrix A by Hoseholder transformations is
as folowing:

1. Build the Householder vector u from equation (22) (the reflection with which zeroes the subdiagonal
components of the first column of matrix A);

2. Apply this Householder reflection to all columns of matrix A;

3. Store the elements of u in the zeroed elements of matrix A and store τ in a separate array for
keeping taus;

4. Apply the algorithm recursively to the matrix A2...n,2...m (that is the matrix A wihout the first
column and the first row).

One typically does not explicitely builds the Q matrix but rather applies (in an effective way avoiding
matrix-matrix operations) the successive Householder reflections stored during the decomposition.

Determinant of a matrix

LU- and QR-decompositions allow O(n3) calculation of the determinant of a square matrix. Indeed, for
the LU-decomposition,

detA = detLU = det L detU = det U =

n
∏

i=1

Uii . (23)

For the QR-decomposition
detA = detQR = detQ detR . (24)

Since Q is an orthogonal matrix (det Q)2 = 1 and therefore

| detA| = | detR| =

∣

∣

∣

∣

∣

n
∏

i=1

Rii

∣

∣

∣

∣

∣

. (25)

Matrix inverse

The inverse A−1 of a square n × n matrix A can be calculated by solving n linear equations Axi = zi,
i = 1 . . . n, where zi is a column where all elements are equal zero except for the element number i, which
is equal one. The matrix made of columns xi is apparently the inverse of A.
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