
Ordinary differential equations

Introduction

Many scientific problems can be formulated in terms of a system of ordinary differential equations (ODE),

y′(x) = f(x,y) , (1)

with an initial condition
y(x0) = y0 , (2)

where y′ ≡ dy/dx, and the boldface variables y and f(x,y) are generally understood as column-vectors.

Runge-Kutta methods

Runge-Kutta methods are one-step methods for numerical integration of ODE (1). The solution y is
advanced from the point x0 to x1 = x0 + h using a one-step formula

y1 = y0 + hk, (3)

where y1 is the approximation to y(x1), and k is a cleverly chosen (vector) constant. The Runge-Kutta
methods are distinguished by their order : a method has order p if it can integrate exactly an ODE where
the solution is a polynomyal of order p. In other words, if the error of the method is O(hp+1) for small
h.

The first order Runge-Kutta method is the Euler’s method,

k = f(x0,y0) . (4)

Second order Runge-Kutta methods advance the solution by an auxiliary evaluation of the derivative,
e.g. the mid-point method,

k0 = f(x0,y0) ,

k1/2 = f(x0 +
1
2
h,y0 +

1
2
hk0) ,

k = k1/2 , (5)

or the two-point method,

k0 = f(x0,y0),

k1 = f(x0 + h,y0 + hk0),

k =
1

2
(k0 + k1) . (6)

These two methods can be combined into a third order method,

k =
1

6
k0 +

4

6
k1/2 +

1

6
k1 . (7)

The most commont is the fourth-order method, which is called RK4 or simply the Runge-Kutta

method,

k0 = f(x0,y0) ,

k1 = f(x0 +
1
2
h,y0 +

1
2
hk0) ,

k2 = f(x0 +
1
2
h,y0 +

1
2
hk1) ,

k3 = f(x0 + h,y0 + hk2) ,

k = 1
6
(k0 + 2k1 + 2k2 + k3) . (8)

Higher order Runge-Kutta methods have been devised, with the most famous being the Runge-Kutta-
Fehlberg fourth/fifth order method, RKF45, implemented in the renowned rkf45 Fortran routine.
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Multistep methods

Multistep methods try to use the information about the function gathered at the previous steps. They
are generally not self-starting as there are no previous points at the start of the integration. The first
step must be a one-step method, for example a Runge-Kutta step.

A two-step method

Given the previous point, (x−1,y−1), in addition to the current point (x0,y0), the sought function y can
be approximated in the vicinity of the point x0 as

ȳ(x) = y0 + y′

0 · (x− x0) + c · (x− x0)
2, (9)

where y′

0 = f(x0,y0) and the coefficient c is found from the condition y(x−1) = y−1,

c =
y−1 − y0 + y′

0 · (x0 − x−1)

(x0 − x−1)2
. (10)

The value of the function at the next point, x1, can now be estimated as ȳ(x1) from (9).
The error of this second-order two-step stepper can be estimated by a comparison with a first-order

Euler’s step, which is given by the linear part of (9). The difference ‖c‖h2 between the two steppers can
thus serve as the error estimate.

A three-step method

Including yet another point, (x−2,y−2), allows to further increase the order of the approximationi (9),

y̌(x) = ȳ(x) + d · (x− x0)
2(x− x−1) . (11)

The coefficient d can be found from the condition y̌(x−2) = y−2, which gives

d =
y−2 − ȳ(x−2)

(x−2 − x0)2(x−2 − x−1)
. (12)

The error estimate is now
err ≈ ‖y̌(x+ h)− ȳ(x + h)‖ . (13)

Predictor-corrector methods

Predictor-corrector methods use extra iterations to improve the solution. For example, the two-point
Runge-Kutta method (6) is as actually a predictor-corrector method, as it first calculates the prediction

ỹ1 for y(x1),
ỹ1 = y0 + hf(x0,y0) , (14)

and then uses this prediction in a correction step,

˜̃y1 = y0 + h
1

2

(

f(x0,y0) + f(x1, ỹ1)
)

(15)

Similarly, one can use the two-step approximation (9) as a predictor, and then improve it by one
order with a correction step, namely

¯̄y(x) = ȳ(x) + d · (x − x0)
2(x− x−1). (16)

The coefficient d can be found from the condition ¯̄y′(x1) = f̄1, where f̄1 = f(x1, ȳ(x1)),

d =
f̄1 − y′

0 − 2c · (x1 − x0)

2(x1 − x0)(x1 − x−1) + (x1 − x0)2
. (17)

Equation (16) gives a better estimate, y1 = ¯̄y(x1), of the function at the point x1.
In this context the formula (9) serves as predictor, and (16) as corrector. The difference between the

two gives an estimate of the error.
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Step size control

Error estimate

The error δy of the integration step for a given method can be estimated e.g. by comparing the solutions
for a full-step and two half-steps (the Runge principle),

δy ≈
ytwo half steps − yfull step

2p − 1
, (18)

where p is the order of the algorithm used. It is better to pick formulas where the full-step and two
half-step calculations share the evaluations of the function f(x,y).

Another possibility is to make the same step with two methods of different orders, the difference
between the solutions providing an estimate of the error.

In a predictor-corrector method the correction itself can serve as the estimate of the error.

Table 1: Runge-Kutta mid-point stepper with error estimate.

#inc lude<vector>
#inc lude<func t i ona l>
#inc lude<armadi l lo>
us ing namespace arma ;

void rks tep12 (
const s td : : funct ion<vec ( double , vec)> & f ,
const double & x0 , const vec & y0 , const double & h ,
vec & y1 , vec & dy )

{
vec k0 = f ( x0 , y0 ) ;
vec k12 = f ( x0+h/2 , y0+k0∗h /2 ) ;
y1 = y0 + k12∗h ;
dy = ( k0 −k12 )∗h/2 ;

}

Adaptive step size control

Let tolerance τ be the maximal accepted error consistent with the required absolute, δ, and relative, ǫ,
accuracies to be achieved in the integration of an ODE,

τ = ǫ‖y‖+ δ , (19)

where ‖y‖ is the “norm” of the column-vector y.
Suppose the inegration is done in n steps of size hi such that

∑n
i=1 hi = b − a. Under assumption

that the errors at the integration steps are random and independent, the step tolerance τi for the step i
has to scale as the square root of the step size,

τi = τ

√

hi

b− a
. (20)

Then, if the error ei on the step i is less than the step tolerance, ei ≤ τi, the total error E will be
consistent with the total tolerance τ ,

E ≈

√

√

√

√

n
∑

i=1

e2i ≤

√

√

√

√

n
∑

i=1

τ2i = τ

√

√

√

√

n
∑

i=1

hi

b− a
= τ . (21)

In practice one uses the current values of the function y in the estimate of the tolerance,

τi = (ǫ‖yi‖+ δ)

√

hi

b− a
(22)
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The step is accepted if the error is smaller than tolerance. The next step-size can be estimated
according to the empirical prescription

hnew = hold ×
(τ

e

)Power

× Safety, (23)

where Power ≈ 0.25, Safety ≈ 0.95. If the error ei is larger than tolerance τi the step is rejected and a
new step with the new step size (23) is attempted.

Table 2: An ODE driver with adaptive step size control.

#inc lude <cmath>
#inc lude <armadi l lo>
#inc lude <vector>
us ing namespace arma ;

void rks tep12 (
const s td : : funct ion<vec ( double , vec)> & f ,
const double & x0 , const vec & y0 , const double & h ,
vec & y1 , vec & dy ) ;

i n t rkdr iv e (
const s td : : funct ion<vec ( double , vec)> & f ,
s td : : vector<double>&x l i s t , s td : : vector<vec>&y l i s t ,
double b , double h , double acc , double eps )

{
i n t k=0, n=y l i s t [ 0 ] . s i z e ( ) ;
double a=x l i s t [ 0 ] ;
vec dy (n ) , y1 (n ) ;
whi l e ( x l i s t [ k]<b){

double x=x l i s t [ k ] ;
vec y=y l i s t [ k ] ;
i f ( x+h>b) h=b−x ;
rks tep12 ( f , x , y , h , y1 , dy ) ;
double e r r=norm(dy , 2 ) ;
double normy=norm(y1 , 2 ) ;
double t o l=(normy∗ eps+acc )∗ s q r t (h/(b−a ) ) ;
i f ( to l>e r r ){ // accept s tep and go on

k++;
x l i s t . push back ( x+h ) ;
y l i s t . push back ( y1 ) ;
}

i f ( e r r >0) h = h∗pow( t o l / er r , 0 . 2 5 ) ∗ 0 . 9 5 ;
e l s e h = 2∗h ;
}//end whi l e

r e turn k ;
}// end rkdr iv e
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