
Table 1: Javascript implementation of Lagrange polynomial interpolation.

Interpolation

In practice one often meets a situation where the function of interest, f(x), is only represented by a
discrete set tabulated points, {xi, yi = f(xi) | i = 1 . . . n}, obtained for example by sampling, experi-
mentation, or extensive numerical calculations.

Interpolation means constructing a (smooth) function, called interpolating function, which passes
exactly through the given points and hopefully approximates the tabulated function in between the
tabulated points. Interpolation is a specific case of curve fitting in which the fitting function must go
exactly through the data points.

The interpolating function can be used for different practical needs like estimating the tabulated
function between the tabulated points and estimating the derivatives and integrals involving the tabulated
function.

Polynomial interpolation

Polynomial interpolation uses a polynomial as the interpolating function. Given a table of n points,
{xi, yi}, one can construct a polynomial P (n−1)(x) of the order n− 1 which passes exactly through the
points. This polynomial can be intuitively written in the Lagrange form,

P (n−1)(x) =

n
∑

i=1

yi

n
∏

k 6=i

x− xk

xi − xk

. (1)

Higher order interpolating polynomials are susceptible to the Runge phenomenon – erratic oscillations
close to the end-points of the interval as illustrated on Fig. 1.

−6 −4 −2 0 2 4 6
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 1: Lagrange interpolating polynomial, solid line, showing the Runge phenomenon: large oscilla-
tions at the end-points. Dashed line shows a quadratic spline.

This problem can be avoided by using only the nearest few points instead of all the points in the
table (local interpolation) or by using spline interpolation.

Spline interpolation

Spline interpolation uses a piecewise polynomial, S(x), called spline, as the interpolating function,

S(x) = Si(x) if x ∈ [xi, xi+1] , (2)

where Si(x) is a polynomial of a given order k.
The spline of the order k ≥ 1 can be made continuous at the tabulated points,

Si(xi) = yi , i = 1, . . . , n− 1

Si(xi+1) = yi+1 , i = 1, . . . , n− 1 , (3)

1

together with its k − 1 derivatives,

S′
i(xi+1) = S′

i+1(xi+1) , i = 1, . . . , n− 2

S′′
i (xi+1) = S′′

i+1(xi+1) , i = 1, . . . , n− 2

. . . (4)

Continuity conditions (3) and (4) make kn+n−2k linear equations for the (n−1)(k+1) = kn+n−k−1
coefficients in n−1 polynomials (2) of the order k. The missing k−1 conditions can be chosen (reasonably)
arbitrarily.

The most popular is the cubic spline, where the polynomials Si(x) are of third order. The cubic
spline is a continuous function together with its first and second derivatives. The cubic spline also has
a nice feature that it (sort of) minimizes the total curvature of the interpolating function. This makes
the cubic splines look good.

Quadratic spline, which is continuous together with its first derivative, is not nearly as good as the
cubic spline in most respects. Particularly it might oscillate unpleasantly when a quick change in the
tabulated function is followed by a period where the function is nearly a constant. The cubic spline is
less susceptible to such oscillations.

Linear spline is simply a polygon drawn through the tabulated points.

Linear interpolation

If the spline polynomials are linear the spline is called linear interpolation. The continuity conditions (3)
can be satisfied by choosing the spline as

Si(x) = yi + pi(x− xi) , (5)

where

pi =
∆yi
∆xi

, ∆yi
.
= yi+1 − yi , ∆xi

.
= xi+1 − xi . (6)

Quadratic spline

Quadratic spline is made of second order polynomials, conveniently written in the form

Si(x) = yi + pi(x− xi) + ci(x− xi)(x− xi+1) , (7)

which identically satisfies the spline continuity conditions Si(xi) = yi and Si(xi+1) = yi+1. Substituting
(7) into the derivative continuity condition, S′

i(xi+1) = S′
i+1(xi+1), gives n − 2 equations for n − 1

unknown coefficients ci,

pi + ci∆xi = pi+1 − ci+1∆xi+1 . (8)

One coefficient can be chosen arbitrarily, for example c1 = 0. The other coefficients can now be
calculated recursively,

ci+1 =
1

∆xi+1
(pi+1 − pi − ci∆xi) , i = 1, . . . , n− 1 . (9)

Alternatively, one can choose cn−1 = 0 and make the inverse recursion

ci =
1

∆xi

(pi+1 − pi − ci+1∆xi+1) , i = n− 2, . . . , 1 . (10)

In practice, unless you know what your c1 (or cn−1) is, it is better to run both recursions and then
average the resulting c’s.

The optimized form (7) of the quadratic spline can aslo be written in the ordinary form, suitable for
differentiation and integration, as

Si(x) = yi + bi(x− xi) + ci(x − xi)
2 , where bi = pi − ci∆xi . (11)

2

Table 2: Quadratic spline in C++, functional style

#include<functional> // to be compiled with -std=c++0x

#include<vector>
using namespace std;

function<double(double)> qspline(vector<double>&x,vector<double>&y)
{ // returns the interpolating function (quadratic spline)

int n=x.size(); vector<double> p(n-1),h(n-1),c(n-1);
for(int i=0;i<n-1;i++){ h[i]=x[i+1]-x[i]; p[i]=(y[i+1]-y[i])/h[i];}

c[0]=0; // recursion up

for(int i=0;i<n-2;i++) c[i+1]=(p[i+1]-p[i]-c[i]*h[i])/h[i+1];

c[n-2]/=2; //recursion down
for(int i=n-3;i>=0;i--) c[i]=(p[i+1]-p[i]-c[i+1]*h[i+1])/h[i];

return [x,y,p,c,n](double z){ // anonymous function
int i=0, j=n-1; // binary search

while(j-i>1){int m=(i+j)/2; if(z>x[m]) i=m; else j=m;}
return y[i]+(p[i]+c[i]*(z-x[i+1]))*(z-x[i]);
};

}

Cubic spline

Cubic splines are made of third order polynomials written e.g. in the form

Si(x) = yi + bi(x− xi) + ci(x− xi)
2 + di(x − xi)

3 , (12)

which automatically satisfies the upper half of continuity conditions (3). The other half of continuity
conditions (3) and the continuity of the first and second derivatives (4) give

yi + bihi + cih
2
i + dih

3
i = yi+1 , i = 1, . . . , n− 1

bi + 2cihi + 3dih
2
i = bi+1 , i = 1, . . . , n− 2

2ci + 6dihi = 2ci+1 , i = 1, . . . , n− 2 (13)

where
hi = xi+1 − xi . (14)

The set of equations (13) is a set of 3n − 5 linear equations for the 3(n − 1) unknown coefficients
{ai, bi, ci | i = 1, . . . , n − 1}. Therefore two more equations should be added to the set to find the
coefficients. If the two extra equations are also linear, the total system is linear and can be easily solved.

The spline is called natural if the extra conditions are given as vanishing second derivative at the
end-points,

S′′(x1) = S′′(xn) = 0 , (15)

which gives

c1 = 0 ,

cn−1 + 3dn−1hn−1 = 0 . (16)

Solving the first two equations in (13) for ci and di gives
1

cihi = −2bi − bi+1 + 3pi ,

dih
2
i = bi + bi+1 − 2pi , (17)

where pi
.
= ∆yi

hi

. The natural conditions (16) and the third equation in (13) then produce the following
tridiagonal system of n linear equations for the n coefficients bi,

2b1 + b2 = 3p1 ,

bi + (2
hi

hi+1
+ 2)bi+1 +

hi

hi+1
bi+2 = 3(pi + pi+1

hi

hi+1
) , i = 1, . . . , n− 2

bn−1 + 2bn = 3pn−1 , (18)

1introducing an auxiliary coefficient bn

3

or, in the matrix form,















D1 Q1 0 0 . . .
1 D2 Q2 0 . . .
0 1 D3 Q3 . . .
...

...
. . .

. . .
. . .

. 0 1 Dn



























b1
...
...
bn













=













B1

...

...
Bn













(19)

where the elements Di at the main diagonal are

D1 = 2 ; Di+1 = 2
hi

hi+1
+ 2 , i = 1, . . . , n− 2 ; Dn = 2 , (20)

the elements Qi at the above-main diagonal are

Q1 = 1 ; Qi+1 =
hi

hi+1
, i = 1, . . . , n− 2 , (21)

and the right-hand side terms Bi are

B1 = 3p1 ; Bi+1 = 3(pi + pi+1
hi

hi+1
) , i = 1, . . . , n− 2 ;Bn = 3pn−1 . (22)

This system can be solved by one run of Gauss elimination and then a run of back-substitution. After
a run of Gaussian elimination the system becomes















D̃1 Q1 0 0 . . .

0 D̃2 Q2 0 . . .

0 0 D̃3 Q3 . . .
...

...
. . .

. . .
. . .

. 0 0 D̃n



























b1
...
...
bn













=













B̃1

...

...

B̃n













, (23)

where
D̃1 = D1 ; D̃i = Di −Qi−1/D̃i−1 , i = 2, . . . , n (24)

and
B̃1 = B1 ; B̃i = Bi − B̃i−1/D̃i−1 , i = 2, . . . , n (25)

The triangular system (23) can be solved by a run of back-substitution,

bn =
1

D̃n

B̃n ; bi =
1

D̃i

(B̃i −Qibi+1) , i = n− 1, . . . , 1 . (26)

Other forms of interpolation

Other forms of interpolation can be constructed by choosing a different class of interpolating functions,
for example, rational function interpolation, trigonometric interpolation, wavelet interpolation etc.

Sometimes not only the value of the function is given at the tabulated points, but also the derivative.
This extra information can be taken advantage of when constructing the interpolation function.

Interpolation of a function in more than one dimension is called multivariate interpolation. In two
dimension one of the easiest methods is the bi-linear interpolation where the function in each tabulated
rectangle is approximated as a product of two linear functions,

f(x, y) ≈ (ax+ b)(cy + d) , (27)

where the constants a, b, c, d are obtained from the condition that the interpolating function is equal the
tabulated values at the nearest four tabulated points.

4

Table 3: Cubic spline in C++, object-oriented style

#include<vector>

#include<stdexcept>
using namespace std;

struct cspline
{

int n; vector<double> x,y,b,c,d;
cspline(vector<double>&x,vector<double>&y);
double eval(double z);

};

cspline::cspline(vector<double>&x,vector<double>&y)
: n(x.size()), x(x), y(y), b(n), c(n-1), d(n-1)

{
vector<double> D(n), Q(n-1), B(n), h(n-1), p(n-1);
for(int i=0;i<n-1;i++) { h[i]=x[i+1]-x[i]; p[i]=(y[i+1]-y[i])/h[i]; }

D[0]=2; Q[0]=1; B[0]=3*p[0]; D[n-1]=2; B[n-1]=3*p[n-2];

for(int i=0;i<n-2;i++){
D[i+1]=2*h[i]/h[i+1]+2;
Q[i+1]=h[i]/h[i+1];

B[i+1]=3*(p[i]+p[i+1]*h[i]/h[i+1]);}

for(int i=1;i<n;i++){ // Gauss elimination
D[i]-=Q[i-1]/D[i-1]; B[i]-=B[i-1]/D[i-1]; }

b[n-1]=B[n-1]/D[n-1]; // back-substitution
for(int i=n-2;i>=0;i--) b[i]=(B[i]-Q[i]*b[i+1])/D[i];

for(int i=0;i<n-1;i++){

c[i]=(-2*b[i]-b[i+1]+3*p[i])/h[i];
d[i]=(b[i]+b[i+1]-2*p[i])/h[i]/h[i];}

}

double cspline::eval(double z) // evaluation of spline

{
if(z<x[0] || z>x[n-1]) throw logic_error("eval: out of range");

int i=0, j=n-1; // binary search for the interval for z :
while(j-i>1){ int m=(i+j)/2; if(z>x[m]) i=m; else j=m; }
double h=z-x[i]; // inerpolating spline :

return y[i]+h*(b[i]+h*(c[i]+h*d[i]));
}

5

