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Usage

scibeamer is a flexible package containing functions for quickly
creating high-quality scientific presentations using beamer.

The functions in the scibeamer template are useful for including
images scaled to frame size, optionally with references to image
source publications.
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Building presentations

Add images to the graphics/ folder and change template.tex to
include the desired content, either using the functions provided by
the scibeamer package or standard beamer commands.

The included Makefile allows quick output PDF generation by
typing make from the command line.
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fcite

fcite : Add a citation to the bottom left of the frame
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Examples
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Fig. 1: Geometry and kinematic values of particles.

entities with constant mass. For a particle i with nc contacts,

the sum of translational- and rotational forces is expressed in

two equations:
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where m is the particle mass, x is the particle position vector,

g is the gravitational force vector. I is the moment of inertia,

! is the angular velocity. A dot denotes time derivation, bold

formatting means the symbol is a three-dimensional vector.

A particle is in contact with another particle or a wall

if the volumes overlap. For spherical particles, hereafter de-

noted with superscripts i and j, contact searching is a simple

operation, involving the particle center coordinates and radii:

�ij
n = ||xij || � (ri + rj) (3)

where the inter-particle vector is xij = xi � xj . Particles

overlap when �ij
n < 0, in which case the force components

normal- (fn) and tangential (f t) to the contact plane are

determined using a conventional linear-elastic contact model

(fig. 2):

f ij
n = �kn�

ij
n nij and f ij

t = �kt�
ij
t (4)

where nij = xij/||xij || is the contact normal vector, and

kn,t are the linear-elastic (hookean) spring coe�cients. The

tangential displacement along the contact plane (�ij
t ) is calcu-

lated incrementally by temporal integration of the tangential

contact velocity, and saved for the duration of the contact.

The contact velocity �̇ is found from the translational and

rotational velocities of the particles in contact (Hinrichsen

and Wolf, 2006):

�̇
ij

= (ẋi � ẋj) + ri(nij ⇥ !i) + rj(nij ⇥ !j) (5)

The contact velocity is further divided into normal- (�̇
n
) and

tangential (�̇
t
) components. The magnitude of the tangential

force is limited by the Coulomb-friction criterion of static and

dynamic friction:

||f ij
t || 

(
µs||f ij

n || if ||�̇t|| = 0

µd||f ij
n || if ||�̇t|| > 0

(6)

where the static friction coe�cient (µs) is larger or equal to

the dynamic friction coe�cient (µd). When the tangential

force begins to exceed the static friction, the contact begins
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Fig. 2: Schematic representation of the contact model compo-

nents, normal- and tangential to the contact plane.

to slip along the contact plane. Strain-softening behaviour at

the contact can be introduced by having a lower dynamic-

than static friction coe�cient.

The upper limit of ||f t|| is the shear force acting along

a shear plane, which is optimally oriented towards the di-

rections of principal stress. In granular Coulomb materials,

the shear planes are made up of narrow bands (⇠10 grain

diameters) deforming plastically. The shear stress on the plane

is independent of either the extent or rate of the deformation

(Nedderman, 1992). While the macroscopic direction of the

shear bands are oriented in agreement with the Coulomb

criterion, the microscopic orientation of individual contact

surfaces between grains may vary.

The geotechnical particle assemblage behaviour is thus de-

fined by micro-mechanical parameters, while the collective

macroscopical behaviour is a result of self-organizing complex-

ity of the particles. As demonstrated by Belheine and others

(2009), the normal- and shear sti↵nesses (k) e↵ectively control

the macroscopical parameters Young’s modulus and Poisson’s

ratio, while the friction coe�cients (µ) control the magnitude

of dilatancy during deformation, which in turn governs the

shear strength.

DEM implementation

For our implementation a three-dimensional geometry was

chosen, since it allows for particle rotation around arbitrary

axes, resulting in particle interlocking and correct geometry of

the inter-particle void. The kinematic grain behaviour through

time is integrated in a fully explicit manner, and assumed to

be constant for the duration of small temporal increments

(�t). The algorithm consists of a series of steps:

1. Contact search (eq. 3): Inter-particle and wall-particle

contacts are identified.

2. Interaction (eqs. 4, 5, 6): For each particle contact, the

contact forces and rotational moments are calculated.

3. Integration (eqs. 1, 2): Particle kinematics are updated

using the sum of forces and torques, and time is increased

by �t.

Once the resulting forces (eq. 1 and 2) are found, the new val-

ues of acceleration are used to update positions and velocities.

For the temporal integration, a second-order half-step leapfrog

Verlet integration scheme was used (Fraige and Langston, 2004;

Kruggel-Emden and others, 2008). The length of the time

step has to be small enough to allow multiple updates of the

kinematics, while the elastic wave travels through even the
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entities with constant mass. For a particle i with nc contacts,

the sum of translational- and rotational forces is expressed in

two equations:

miẍi = mig +
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where m is the particle mass, x is the particle position vector,

g is the gravitational force vector. I is the moment of inertia,

! is the angular velocity. A dot denotes time derivation, bold

formatting means the symbol is a three-dimensional vector.

A particle is in contact with another particle or a wall

if the volumes overlap. For spherical particles, hereafter de-

noted with superscripts i and j, contact searching is a simple

operation, involving the particle center coordinates and radii:

�ij
n = ||xij || � (ri + rj) (3)

where the inter-particle vector is xij = xi � xj . Particles

overlap when �ij
n < 0, in which case the force components

normal- (fn) and tangential (f t) to the contact plane are

determined using a conventional linear-elastic contact model

(fig. 2):

f ij
n = �kn�

ij
n nij and f ij

t = �kt�
ij
t (4)

where nij = xij/||xij || is the contact normal vector, and

kn,t are the linear-elastic (hookean) spring coe�cients. The

tangential displacement along the contact plane (�ij
t ) is calcu-

lated incrementally by temporal integration of the tangential

contact velocity, and saved for the duration of the contact.

The contact velocity �̇ is found from the translational and

rotational velocities of the particles in contact (Hinrichsen

and Wolf, 2006):

�̇
ij

= (ẋi � ẋj) + ri(nij ⇥ !i) + rj(nij ⇥ !j) (5)

The contact velocity is further divided into normal- (�̇
n
) and

tangential (�̇
t
) components. The magnitude of the tangential

force is limited by the Coulomb-friction criterion of static and

dynamic friction:

||f ij
t || 

(
µs||f ij

n || if ||�̇t|| = 0

µd||f ij
n || if ||�̇t|| > 0

(6)

where the static friction coe�cient (µs) is larger or equal to

the dynamic friction coe�cient (µd). When the tangential

force begins to exceed the static friction, the contact begins
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Fig. 2: Schematic representation of the contact model compo-

nents, normal- and tangential to the contact plane.

to slip along the contact plane. Strain-softening behaviour at

the contact can be introduced by having a lower dynamic-

than static friction coe�cient.

The upper limit of ||f t|| is the shear force acting along

a shear plane, which is optimally oriented towards the di-

rections of principal stress. In granular Coulomb materials,

the shear planes are made up of narrow bands (⇠10 grain

diameters) deforming plastically. The shear stress on the plane

is independent of either the extent or rate of the deformation

(Nedderman, 1992). While the macroscopic direction of the

shear bands are oriented in agreement with the Coulomb

criterion, the microscopic orientation of individual contact

surfaces between grains may vary.

The geotechnical particle assemblage behaviour is thus de-

fined by micro-mechanical parameters, while the collective

macroscopical behaviour is a result of self-organizing complex-

ity of the particles. As demonstrated by Belheine and others

(2009), the normal- and shear sti↵nesses (k) e↵ectively control

the macroscopical parameters Young’s modulus and Poisson’s

ratio, while the friction coe�cients (µ) control the magnitude

of dilatancy during deformation, which in turn governs the

shear strength.

DEM implementation

For our implementation a three-dimensional geometry was

chosen, since it allows for particle rotation around arbitrary

axes, resulting in particle interlocking and correct geometry of

the inter-particle void. The kinematic grain behaviour through

time is integrated in a fully explicit manner, and assumed to

be constant for the duration of small temporal increments

(�t). The algorithm consists of a series of steps:

1. Contact search (eq. 3): Inter-particle and wall-particle

contacts are identified.

2. Interaction (eqs. 4, 5, 6): For each particle contact, the

contact forces and rotational moments are calculated.

3. Integration (eqs. 1, 2): Particle kinematics are updated

using the sum of forces and torques, and time is increased

by �t.

Once the resulting forces (eq. 1 and 2) are found, the new val-

ues of acceleration are used to update positions and velocities.

For the temporal integration, a second-order half-step leapfrog

Verlet integration scheme was used (Fraige and Langston, 2004;

Kruggel-Emden and others, 2008). The length of the time

step has to be small enough to allow multiple updates of the

kinematics, while the elastic wave travels through even the
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An example image frame using
imageframe
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entities with constant mass. For a particle i with nc contacts,

the sum of translational- and rotational forces is expressed in

two equations:

miẍi = mig +

ncX
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where m is the particle mass, x is the particle position vector,

g is the gravitational force vector. I is the moment of inertia,

! is the angular velocity. A dot denotes time derivation, bold

formatting means the symbol is a three-dimensional vector.

A particle is in contact with another particle or a wall

if the volumes overlap. For spherical particles, hereafter de-

noted with superscripts i and j, contact searching is a simple

operation, involving the particle center coordinates and radii:

�ij
n = ||xij || � (ri + rj) (3)

where the inter-particle vector is xij = xi � xj . Particles

overlap when �ij
n < 0, in which case the force components

normal- (fn) and tangential (f t) to the contact plane are

determined using a conventional linear-elastic contact model

(fig. 2):

f ij
n = �kn�

ij
n nij and f ij

t = �kt�
ij
t (4)

where nij = xij/||xij || is the contact normal vector, and

kn,t are the linear-elastic (hookean) spring coe�cients. The

tangential displacement along the contact plane (�ij
t ) is calcu-

lated incrementally by temporal integration of the tangential

contact velocity, and saved for the duration of the contact.

The contact velocity �̇ is found from the translational and

rotational velocities of the particles in contact (Hinrichsen

and Wolf, 2006):

�̇
ij

= (ẋi � ẋj) + ri(nij ⇥ !i) + rj(nij ⇥ !j) (5)

The contact velocity is further divided into normal- (�̇
n
) and

tangential (�̇
t
) components. The magnitude of the tangential

force is limited by the Coulomb-friction criterion of static and

dynamic friction:

||f ij
t || 

(
µs||f ij

n || if ||�̇t|| = 0

µd||f ij
n || if ||�̇t|| > 0

(6)

where the static friction coe�cient (µs) is larger or equal to

the dynamic friction coe�cient (µd). When the tangential

force begins to exceed the static friction, the contact begins
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Fig. 2: Schematic representation of the contact model compo-

nents, normal- and tangential to the contact plane.

to slip along the contact plane. Strain-softening behaviour at

the contact can be introduced by having a lower dynamic-

than static friction coe�cient.

The upper limit of ||f t|| is the shear force acting along

a shear plane, which is optimally oriented towards the di-

rections of principal stress. In granular Coulomb materials,

the shear planes are made up of narrow bands (⇠10 grain

diameters) deforming plastically. The shear stress on the plane

is independent of either the extent or rate of the deformation

(Nedderman, 1992). While the macroscopic direction of the

shear bands are oriented in agreement with the Coulomb

criterion, the microscopic orientation of individual contact

surfaces between grains may vary.

The geotechnical particle assemblage behaviour is thus de-

fined by micro-mechanical parameters, while the collective

macroscopical behaviour is a result of self-organizing complex-

ity of the particles. As demonstrated by Belheine and others

(2009), the normal- and shear sti↵nesses (k) e↵ectively control

the macroscopical parameters Young’s modulus and Poisson’s

ratio, while the friction coe�cients (µ) control the magnitude

of dilatancy during deformation, which in turn governs the

shear strength.

DEM implementation

For our implementation a three-dimensional geometry was

chosen, since it allows for particle rotation around arbitrary

axes, resulting in particle interlocking and correct geometry of

the inter-particle void. The kinematic grain behaviour through

time is integrated in a fully explicit manner, and assumed to

be constant for the duration of small temporal increments

(�t). The algorithm consists of a series of steps:

1. Contact search (eq. 3): Inter-particle and wall-particle

contacts are identified.

2. Interaction (eqs. 4, 5, 6): For each particle contact, the

contact forces and rotational moments are calculated.

3. Integration (eqs. 1, 2): Particle kinematics are updated

using the sum of forces and torques, and time is increased

by �t.

Once the resulting forces (eq. 1 and 2) are found, the new val-

ues of acceleration are used to update positions and velocities.

For the temporal integration, a second-order half-step leapfrog

Verlet integration scheme was used (Fraige and Langston, 2004;

Kruggel-Emden and others, 2008). The length of the time

step has to be small enough to allow multiple updates of the

kinematics, while the elastic wave travels through even the
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An example unscaled image frame using
imageframenoscale
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entities with constant mass. For a particle i with nc contacts,

the sum of translational- and rotational forces is expressed in

two equations:

miẍi = mig +

ncX
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where m is the particle mass, x is the particle position vector,

g is the gravitational force vector. I is the moment of inertia,

! is the angular velocity. A dot denotes time derivation, bold

formatting means the symbol is a three-dimensional vector.

A particle is in contact with another particle or a wall

if the volumes overlap. For spherical particles, hereafter de-

noted with superscripts i and j, contact searching is a simple

operation, involving the particle center coordinates and radii:

�ij
n = ||xij || � (ri + rj) (3)

where the inter-particle vector is xij = xi � xj . Particles

overlap when �ij
n < 0, in which case the force components

normal- (fn) and tangential (f t) to the contact plane are

determined using a conventional linear-elastic contact model

(fig. 2):

f ij
n = �kn�

ij
n nij and f ij

t = �kt�
ij
t (4)

where nij = xij/||xij || is the contact normal vector, and

kn,t are the linear-elastic (hookean) spring coe�cients. The

tangential displacement along the contact plane (�ij
t ) is calcu-

lated incrementally by temporal integration of the tangential

contact velocity, and saved for the duration of the contact.

The contact velocity �̇ is found from the translational and

rotational velocities of the particles in contact (Hinrichsen

and Wolf, 2006):

�̇
ij

= (ẋi � ẋj) + ri(nij ⇥ !i) + rj(nij ⇥ !j) (5)

The contact velocity is further divided into normal- (�̇
n
) and

tangential (�̇
t
) components. The magnitude of the tangential

force is limited by the Coulomb-friction criterion of static and

dynamic friction:

||f ij
t || 

(
µs||f ij

n || if ||�̇t|| = 0

µd||f ij
n || if ||�̇t|| > 0

(6)

where the static friction coe�cient (µs) is larger or equal to

the dynamic friction coe�cient (µd). When the tangential

force begins to exceed the static friction, the contact begins
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Fig. 2: Schematic representation of the contact model compo-

nents, normal- and tangential to the contact plane.

to slip along the contact plane. Strain-softening behaviour at

the contact can be introduced by having a lower dynamic-

than static friction coe�cient.

The upper limit of ||f t|| is the shear force acting along

a shear plane, which is optimally oriented towards the di-

rections of principal stress. In granular Coulomb materials,

the shear planes are made up of narrow bands (⇠10 grain

diameters) deforming plastically. The shear stress on the plane

is independent of either the extent or rate of the deformation

(Nedderman, 1992). While the macroscopic direction of the

shear bands are oriented in agreement with the Coulomb

criterion, the microscopic orientation of individual contact

surfaces between grains may vary.

The geotechnical particle assemblage behaviour is thus de-

fined by micro-mechanical parameters, while the collective

macroscopical behaviour is a result of self-organizing complex-

ity of the particles. As demonstrated by Belheine and others

(2009), the normal- and shear sti↵nesses (k) e↵ectively control

the macroscopical parameters Young’s modulus and Poisson’s

ratio, while the friction coe�cients (µ) control the magnitude

of dilatancy during deformation, which in turn governs the

shear strength.

DEM implementation

For our implementation a three-dimensional geometry was

chosen, since it allows for particle rotation around arbitrary

axes, resulting in particle interlocking and correct geometry of

the inter-particle void. The kinematic grain behaviour through

time is integrated in a fully explicit manner, and assumed to

be constant for the duration of small temporal increments

(�t). The algorithm consists of a series of steps:

1. Contact search (eq. 3): Inter-particle and wall-particle

contacts are identified.

2. Interaction (eqs. 4, 5, 6): For each particle contact, the

contact forces and rotational moments are calculated.

3. Integration (eqs. 1, 2): Particle kinematics are updated

using the sum of forces and torques, and time is increased

by �t.

Once the resulting forces (eq. 1 and 2) are found, the new val-

ues of acceleration are used to update positions and velocities.

For the temporal integration, a second-order half-step leapfrog

Verlet integration scheme was used (Fraige and Langston, 2004;

Kruggel-Emden and others, 2008). The length of the time

step has to be small enough to allow multiple updates of the

kinematics, while the elastic wave travels through even the



Introduction Commands Examples Conclusions

An example image frame using
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entities with constant mass. For a particle i with nc contacts,

the sum of translational- and rotational forces is expressed in

two equations:

miẍi = mig +
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where m is the particle mass, x is the particle position vector,

g is the gravitational force vector. I is the moment of inertia,

! is the angular velocity. A dot denotes time derivation, bold

formatting means the symbol is a three-dimensional vector.

A particle is in contact with another particle or a wall

if the volumes overlap. For spherical particles, hereafter de-

noted with superscripts i and j, contact searching is a simple

operation, involving the particle center coordinates and radii:

�ij
n = ||xij || � (ri + rj) (3)

where the inter-particle vector is xij = xi � xj . Particles

overlap when �ij
n < 0, in which case the force components

normal- (fn) and tangential (f t) to the contact plane are

determined using a conventional linear-elastic contact model

(fig. 2):

f ij
n = �kn�

ij
n nij and f ij

t = �kt�
ij
t (4)

where nij = xij/||xij || is the contact normal vector, and

kn,t are the linear-elastic (hookean) spring coe�cients. The

tangential displacement along the contact plane (�ij
t ) is calcu-

lated incrementally by temporal integration of the tangential

contact velocity, and saved for the duration of the contact.

The contact velocity �̇ is found from the translational and

rotational velocities of the particles in contact (Hinrichsen

and Wolf, 2006):

�̇
ij

= (ẋi � ẋj) + ri(nij ⇥ !i) + rj(nij ⇥ !j) (5)

The contact velocity is further divided into normal- (�̇
n
) and

tangential (�̇
t
) components. The magnitude of the tangential

force is limited by the Coulomb-friction criterion of static and

dynamic friction:

||f ij
t || 

(
µs||f ij

n || if ||�̇t|| = 0

µd||f ij
n || if ||�̇t|| > 0

(6)

where the static friction coe�cient (µs) is larger or equal to

the dynamic friction coe�cient (µd). When the tangential

force begins to exceed the static friction, the contact begins
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Fig. 2: Schematic representation of the contact model compo-

nents, normal- and tangential to the contact plane.

to slip along the contact plane. Strain-softening behaviour at

the contact can be introduced by having a lower dynamic-

than static friction coe�cient.

The upper limit of ||f t|| is the shear force acting along

a shear plane, which is optimally oriented towards the di-

rections of principal stress. In granular Coulomb materials,

the shear planes are made up of narrow bands (⇠10 grain

diameters) deforming plastically. The shear stress on the plane

is independent of either the extent or rate of the deformation

(Nedderman, 1992). While the macroscopic direction of the

shear bands are oriented in agreement with the Coulomb

criterion, the microscopic orientation of individual contact

surfaces between grains may vary.

The geotechnical particle assemblage behaviour is thus de-

fined by micro-mechanical parameters, while the collective

macroscopical behaviour is a result of self-organizing complex-

ity of the particles. As demonstrated by Belheine and others

(2009), the normal- and shear sti↵nesses (k) e↵ectively control

the macroscopical parameters Young’s modulus and Poisson’s

ratio, while the friction coe�cients (µ) control the magnitude

of dilatancy during deformation, which in turn governs the

shear strength.

DEM implementation

For our implementation a three-dimensional geometry was

chosen, since it allows for particle rotation around arbitrary

axes, resulting in particle interlocking and correct geometry of

the inter-particle void. The kinematic grain behaviour through

time is integrated in a fully explicit manner, and assumed to

be constant for the duration of small temporal increments

(�t). The algorithm consists of a series of steps:

1. Contact search (eq. 3): Inter-particle and wall-particle

contacts are identified.

2. Interaction (eqs. 4, 5, 6): For each particle contact, the

contact forces and rotational moments are calculated.

3. Integration (eqs. 1, 2): Particle kinematics are updated

using the sum of forces and torques, and time is increased

by �t.

Once the resulting forces (eq. 1 and 2) are found, the new val-

ues of acceleration are used to update positions and velocities.

For the temporal integration, a second-order half-step leapfrog

Verlet integration scheme was used (Fraige and Langston, 2004;

Kruggel-Emden and others, 2008). The length of the time

step has to be small enough to allow multiple updates of the

kinematics, while the elastic wave travels through even the

Damsgaard et al. 2013 J. Geophys. Res.-Earth
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Conclusions

• scibeamer provides macros for quickly creating image-based
slides with references using LATEX/Beamer

• Output files can be built as pdf using the provided Makefile

• scibeamer is available at
https://src.adamsgaard.dk/scibeamer

https://src.adamsgaard.dk/scibeamer
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