
sphere Documentation
Release 2.15-beta

Anders Damsgaard

Sep 02, 2019

CONTENTS

1 Contents 3
1.1 Introduction and Installation . 3
1.2 Discrete element method . 6
1.3 Fluid simulation and particle-fluid interaction . 8
1.4 Python API . 14
1.5 sphere internals . 43

2 Indices and tables 49

Python Module Index 51

Index 53

i

ii

sphere Documentation, Release 2.15-beta

This is the official documentation for the sphere discrete element modelling software. This document aims at
guiding the installation process, documenting the usage, and explaining the relevant theory.

sphere is developed by Anders Damsgaard as part as his Ph.D. project, under supervision of David Lundbek Egholm
and Jan A. Piotrowski, all of the Department of Geoscience, Aarhus University, Denmark. The author welcomes
interested third party developers. This document is a work in progress.

Contact: Anders Damsgaard, https://adamsgaard.dk, mailto:anders.damsgaard@geo.au.dk

CONTENTS 1

https://adamsgaard.dk
mailto:anders.damsgaard@geo.au.dk

sphere Documentation, Release 2.15-beta

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Introduction and Installation

The sphere-software is used for three-dimensional discrete element method (DEM) particle simulations. The source
code is written in C++, CUDA C and Python, and is compiled by the user. The main computations are performed on the
graphics processing unit (GPU) using NVIDIA’s general purpose parallel computing architecture, CUDA. Simulation
setup and data analysis is performed with the included Python API.

The ultimate aim of the sphere software is to simulate soft-bedded subglacial conditions, while retaining the flexi-
bility to perform simulations of granular material in other environments.

The purpose of this documentation is to provide the user with a walk-through of the installation, work-flow, data-
analysis and visualization methods of sphere. In addition, the sphere internals are exposed to provide a way of
understanding of the discrete element method numerical routines taking place.

Note: Command examples in this document starting with the symbol $ are meant to be executed in the shell of the
operational system, and >>> means execution in Python. IPython is an excellent, interactive Python shell.

All numerical values in this document, the source code, and the configuration files are typeset with strict respect to the
SI unit system.

1.1.1 Requirements

The build requirements are:

• A Nvidia CUDA-supported version of Linux or Mac OS X (see the CUDA toolkit release notes for more infor-
mation)

• GNU Make

• CMake, version 2.8 or newer

• The GNU Compiler Collection (GCC)

• The Nvidia CUDA toolkit, version 8.0 or newer

In Debian GNU/Linux, these dependencies can be installed by running:

$ sudo apt-get install build-essential cmake nvidia-cuda-toolkit clang-3.8

Unfortunately, the Nvidia Toolkit is shipped under a non-free license. In order to install it in Debian GNU/Linux, add
non-free archives to your /etc/apt/sources.list.

The runtime requirements are:

3

http://ipython.org
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://www.gnu.org/software/make/
http://www.cmake.org
http://gcc.gnu.org/
https://developer.nvidia.com/cuda-downloads

sphere Documentation, Release 2.15-beta

• A CUDA-enabled GPU with compute capability 2.0 or greater.

• A Nvidia CUDA-enabled GPU and device driver

Optional tools, required for simulation setup and data processing:

• Python

• Numpy

• Matplotlib

• Python bindings for VTK

• Imagemagick

• ffmpeg. Soon to be replaced by avconv!

In Debian GNU/Linux, these dependencies can be installed by running:

$ sudo apt-get install python python-numpy python-matplotlib python-vtk \
imagemagick libav-tools

sphere is distributed with a HTML and PDF build of the documentation. The following tools are required for
building the documentation:

• Sphinx

– sphinxcontrib-programoutput

• Doxygen

• Breathe

• dvipng

• TeX Live, including pdflatex

In Debian GNU/Linux, these dependencies can be installed by running:

$ sudo apt-get install python-sphinx python-pip doxygen dvipng \
python-sphinxcontrib-programoutput texlive-full

$ sudo pip install breathe

Git is used as the distributed version control system platform, and the source code is maintained at Github. sphere
is licensed under the GNU Public License, v.3.

Note: All Debian GNU/Linux runtime, optional, and documentation dependencies mentioned above can be installed
by executing the following command from the doc/ folder:

$ make install-debian-pkgs

1.1.2 Obtaining sphere

The best way to keep up to date with subsequent updates, bugfixes and development, is to use the Git version control
system. To obtain a local copy, execute:

$ git clone git@github.com:anders-dc/sphere.git

4 Chapter 1. Contents

http://www.nvidia.com/object/cuda_gpus.html
http://www.python.org/
http://numpy.scipy.org
http://matplotlib.org
http://www.vtk.org
http://www.imagemagick.org/script/index.php
http://ffmpeg.org/
http://sphinx-doc.org
http://packages.python.org/sphinxcontrib-programoutput/
http://www.stack.nl/~dimitri/doxygen/
http://michaeljones.github.com/breathe/
http://www.nongnu.org/dvipng/
http://www.tug.org/texlive/
http://git-scm.com
https://github.com/anders-dc/sphere/
https://www.gnu.org/licenses/gpl.html

sphere Documentation, Release 2.15-beta

1.1.3 Building sphere

sphere is built using cmake, the platform-specific C/C++ compilers, and nvcc from the Nvidia CUDA toolkit.

If you instead plan to execute it on a Fermi GPU, change set(GPU_GENERATION 1) to set(GPU_GENERATION
0 in CMakeLists.txt.

In some cases the CMake FindCUDA module will have troubles locating the CUDA samples directory, and will
complain about helper_math.h not being found.

In that case, modify the CUDA_SDK_ROOT_DIR variable in src/CMakeLists.txt to the path where you in-
stalled the CUDA samples, and run cmake . && make again. Alternatively, copy helper_math.h from the
CUDA sample subdirectory common/inc/helper_math.h into the sphere src/ directory, and run cmake and
make again. Due to license restrictions, sphere cannot be distributed with this file.

If you plan to run sphere on a Kepler GPU, execute the following commands from the root directory:

$ cmake . && make

NOTE: If your system does not have a GCC compiler compatible with the installed CUDA version (e.g. GCC-5 for
CUDA 8), you will see errors at the linker stage. In that case, try using clang-3.8 as the C and C++ compiler
instead:

$ rm -rf CMakeCache.txt CMakeFiles/
$ export CC=$(which clang-3.8) && export CXX=$(which clang++-3.8) && cmake . && make

After a successfull installation, the sphere executable will be located in the root folder. To make sure that all
components are working correctly, execute:

$ make test

Disclaimer: On some systems the Navier-Stokes related tests will fail. If you do encounter these problems, but do not
plan on using the Navier Stokes solver for fluid dynamics, carry on.

If successful the Makefiles will create the required data folders, object files, as well as the sphere executable in the
root folder. Issue the following commands to check the executable:

$./sphere --version

The output should look similar to this:

.-------------------------------------.
| _ |
___ _ __		__ ___ _ __ ___						
/ __	'_ \| '_ \ / _ \ '__/ _ \							
__ \	_)				__/		__/	
	___/ .__/	_		_	___	_	___	
	_	Version: 2.15						
`-------------------------------------´
A discrete-element method particle dynamics simulator.
Written by Anders Damsgaard, license GPLv3+.
https://adamsgaard.dk

The documentation can be read in the reStructuredText-format in the doc/sphinx/ folder, or in the HTML or PDF
formats in the folders doc/html and doc/pdf.

Optionally, the documentation can be built using the following commands:

1.1. Introduction and Installation 5

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

sphere Documentation, Release 2.15-beta

$ cd doc/sphinx
$ make html
$ make latexpdf

To see all available output formats, execute:

$ make help

1.1.4 Updating sphere

To update your local version, type the following commands in the sphere root directory:

$ git pull && cmake . && make

1.1.5 Work flow

After compiling the sphere binary, the procedure of a creating and handling a simulation is typically arranged in the
following order:

• Setup of particle assemblage, physical properties and conditions using the Python API (python/sphere.
py).

• Execution of sphere software, which simulates the particle behavior as a function of time, as a result of the
conditions initially specified in the input file.

• Inspection, analysis, interpretation and visualization of sphere output in Python, and/or scene rendering using
the built-in ray tracer.

1.2 Discrete element method

Granular material is a very common form of matter, both in nature and industry. It can be defined as material consisting
of interacting, discrete particles. Common granular materials include gravels, sands and soils, ice bergs, asteroids,
powders, seeds, and other foods. Over 75% of the raw materials that pass through industry are granular. This wide
occurrence has driven the desire to understand the fundamental mechanics of the material.

Contrary to other common materials such as gases, liquids and solids, a general mathematical formulation of it’s
behavior hasn’t yet been found. Granular material can, however, display states that somewhat resemble gases, fluids
and solids.

The Discrete Element Method (DEM) is a numerical method that can be used to simulate the interaction of particles.
Originally derived from Molecular Dynamics, it simulates particles as separate entities, and calculates their positions,
velocities, and accelerations through time. See Cundall and Strack (1979) and this blog post for general introduction
to the DEM. The following sections will highlight the DEM implementation in sphere. Some of the details are also
described in Damsgaard et al. 2013. In the used notation, a bold symbol denotes a three-dimensional vector, and a dot
denotes that the entity is a temporal derivative.

1.2.1 Contact search

Homogeneous cubic grid.

𝛿𝑖𝑗𝑛 = ||𝑥𝑖 − 𝑥𝑗 || − (𝑟𝑖 + 𝑟𝑗)

6 Chapter 1. Contents

https://en.wikipedia.org/wiki/Discrete_element_method
https://en.wikipedia.org/wiki/Molecular_dynamics
http://anders-dc.github.io/2013/10/16/the-discrete-element-method/

sphere Documentation, Release 2.15-beta

where 𝑟 is the particle radius, and 𝑥 denotes the positional vector of a particle, and 𝑖 and 𝑗 denote the indexes of two
particles. Negative values of 𝛿𝑛 denote that the particles are overlapping.

1.2.2 Contact interaction

Now that the inter-particle contacts have been identified and characterized by their overlap, the resulting forces from
the interaction can be resolved. The interaction is decomposed into normal and tangential components, relative to the
contact interface orientation. The normal vector to the contact interface is found by:

𝑛𝑖𝑗 =
𝑥𝑖 − 𝑥𝑗

||𝑥𝑖 − 𝑥𝑗 ||

The contact velocity 𝛿̇ is found by:

𝛿̇
𝑖𝑗

= (𝑥𝑖 − 𝑥𝑗) + (𝑟𝑖 +
𝛿𝑖𝑗𝑛
2

)(𝑛𝑖𝑗 × 𝜔𝑖) + (𝑟𝑗 +
𝛿𝑖𝑗𝑛
2

)(𝑛𝑖𝑗 × 𝜔𝑗)

The contact velocity is decomposed into normal and tangential components, relative to the contact interface. The
normal component is:

𝛿̇𝑖𝑗𝑛 = −(𝛿̇
𝑖𝑗
· 𝑛𝑖𝑗)

and the tangential velocity component is found as:

𝛿̇
𝑖𝑗

𝑡 = 𝛿̇
𝑖𝑗
− 𝑛𝑖𝑗(𝑛𝑖𝑗 · 𝛿̇

𝑖𝑗
)

where 𝜔 is the rotational velocity vector of a particle. The total tangential displacement on the contact plane is found
incrementally:

𝛿𝑖𝑗𝑡,uncorrected =

∫︁ 𝑡𝑐

0

𝛿̇
𝑖𝑗

𝑡 ∆𝑡

where 𝑡𝑐 is the duration of the contact and ∆𝑡 is the computational time step length. The tangential contact interface
displacement is set to zero when a contact pair no longer overlaps. At each time step, the value of 𝛿𝑡 is corrected for
rotation of the contact interface:

𝛿𝑖𝑗𝑡 = 𝛿𝑖𝑗𝑡,uncorrected − (𝑛(𝑛 · 𝛿𝑖𝑗𝑡,uncorrected)

With all the geometrical and kinetic components determined, the resulting forces of the particle interaction can be
determined using a contact model. sphere features only one contact model in the normal direction to the contact;
the linear-elastic-viscous (Hookean with viscous damping, or Kelvin-Voigt) contact model. The resulting force in the
normal direction of the contact interface on particle 𝑖 is:

𝑓 𝑖𝑗
𝑛 =

(︁
−𝑘𝑛𝛿

𝑖𝑗
𝑛 − 𝛾𝑛𝛿𝑛

𝑖𝑗
)︁
𝑛𝑖𝑗

The parameter 𝑘𝑛 is the defined spring coefficient in the normal direction of the contact interface, and 𝛾𝑛 is the defined
contact interface viscosity, also in the normal direction. The loss of energy in this interaction due to the viscous
component is for particle 𝑖 calculated as:

𝑒̇𝑖𝑣 = 𝛾𝑛(𝛿̇𝑖𝑗𝑛)2

The tangential force is determined by either a viscous-frictional contact model, or a elastic-viscous-frictional contact
model. The former contact model is very computationally efficient, but somewhat inaccurate relative to the mechanics
of real materials. The latter contact model is therefore the default, even though it results in longer computational times.
The tangential force in the visco-frictional contact model:

𝑓 𝑖𝑗
𝑡 = −𝛾𝑡𝛿𝑡

𝑖𝑗

1.2. Discrete element method 7

https://en.wikipedia.org/wiki/Hooke's_law

sphere Documentation, Release 2.15-beta

𝛾𝑛 is the defined contact interface viscosity in the tangential direction. The tangential displacement along the contact
interface (𝛿𝑡) is not calculated and stored for this contact model. The tangential force in the more realistic elastic-
viscous-frictional contact model:

𝑓 𝑖𝑗
𝑡 = −𝑘𝑡𝛿

𝑖𝑗
𝑡 − 𝛾𝑡𝛿𝑡

𝑖𝑗

The parameter 𝑘𝑛 is the defined spring coefficient in the tangential direction of the contact interface. Note that the
tangential force is only found if the tangential displacement (𝛿𝑡) or the tangential velocity (𝛿̇𝑡) is non-zero, in order to
avoid division by zero. Otherwise it is defined as being [0, 0, 0].

For both types of contact model, the tangential force is limited by the Coulomb criterion of static and dynamic friction:

||𝑓 𝑖𝑗
𝑡 || ≤

{︃
𝜇𝑠||𝑓 𝑖𝑗

𝑛 || if ||𝑓 𝑖𝑗
𝑡 || = 0

𝜇𝑑||𝑓 𝑖𝑗
𝑛 || if ||𝑓 𝑖𝑗

𝑡 || > 0

If the elastic-viscous-frictional contact model is used and the Coulomb limit is reached, the tangential displacement
along the contact interface is limited to this value:

𝛿𝑖𝑗𝑡 =
1

𝑘𝑡

(︃
𝜇𝑑||𝑓 𝑖𝑗

𝑛 ||
𝑓 𝑖𝑗
𝑡

||𝑓 𝑖𝑗
𝑡 ||

+ 𝛾𝑡𝛿̇
𝑖𝑗

𝑡

)︃
If the tangential force reaches the Coulomb limit, the energy lost due to frictional dissipation is calculated as:

𝑒̇𝑖𝑠 =
||𝑓 𝑖𝑗

𝑡 𝛿̇
𝑖𝑗

𝑡 ∆𝑡||
∆𝑡

The loss of energy by viscous dissipation in the tangential direction is not found.

1.2.3 Temporal integration

In the DEM, the time is discretized into small steps (∆𝑡). For each time step, the entire network of contacts is resolved,
and the resulting forces and torques for each particle are found. With these values at hand, the new linear and rotational
accelerations can be found using Newton’s second law of the motion of solid bodies. If a particle with mass 𝑚 at a
point in time experiences a sum of forces denoted 𝐹 , the resultant acceleration (𝑎) can be found by rearranging
Newton’s second law:

𝐹 = 𝑚𝑎 ⇒ 𝑎 =
𝐹

𝑚

The new velocity and position is found by integrating the above equation with regards to time. The simplest integration
scheme in this regard is the Euler method:

𝑣 = 𝑣𝑜𝑙𝑑 + 𝑎∆𝑡

𝑝 = 𝑝𝑜𝑙𝑑 + 𝑣∆𝑡

1.3 Fluid simulation and particle-fluid interaction

A new and experimental addition to sphere is the ability to simulate a mixture of particles and a Newtonian fluid. The
fluid is simulated using an Eulerian continuum approach, using a custom CUDA solver for GPU computation. This
approach allows for fast simulations due to the limited need for GPU-CPU communications, as well as a flexible code
base.

The following sections will describe the theoretical background, as well as the solution procedure and the numerical
implementation.

8 Chapter 1. Contents

https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Euler_method

sphere Documentation, Release 2.15-beta

1.3.1 Derivation of the Navier Stokes equations with porosity

Following the outline presented by Limache and Idelsohn (2006), the continuity equation for an incompressible fluid
material is given by:

∇ · 𝑣 = 0

and the momentum equation:

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌(𝑣 · ∇𝑣) = ∇ · 𝜎 − 𝑓 𝑖 + 𝜌𝑔

Here, 𝑣 is the fluid velocity, 𝜌 is the fluid density, 𝜎 is the Cauchy stress tensor, 𝑓 𝑖 is the particle-fluid interaction
vector and 𝑔 is the gravitational acceleration. For incompressible Newtonian fluids, the Cauchy stress is given by:

𝜎 = −𝑝𝐼 + 𝜏

𝑝 is the fluid pressure, 𝐼 is the identity tensor, and 𝜏 is the deviatoric stress tensor, given by:

𝜏 = 𝜇𝑓∇𝑣 + 𝜇𝑓 (∇𝑣)𝑇

By using the following vector identities:

∇ · (𝑝𝐼) = ∇𝑝

∇ · (∇𝑣) = ∇2𝑣

∇ · (∇𝑣)𝑇 = ∇(∇ · 𝑣)

the deviatoric component of the Cauchy stress tensor simplifies to the following, assuming that spatial variations in
the viscosity can be neglected:

= −∇𝑝 + 𝜇𝑓∇2𝑣

Since we are dealing with fluid flow in a porous medium, additional terms are introduced to the equations for con-
servation of mass and momentum. In the following, the equations are derived for the first spatial component. The
solution for the other components is trivial.

The porosity value (in the saturated porous medium the volumetric fraction of the fluid phase) denoted 𝜑 is incorporated
in the continuity and momentum equations. The continuity equation becomes:

𝜕𝜑

𝜕𝑡
+ ∇ · (𝜑𝑣) = 0

For the 𝑥 component, the Lagrangian formulation of the momentum equation with a body force 𝑓 becomes:

𝐷(𝜑𝑣𝑥)

𝐷𝑡
=

1

𝜌
[∇ · (𝜑𝜎)]𝑥 − 1

𝜌
𝑓 𝑖
𝑥 + 𝜑𝑔

In the Eulerian formulation, an advection term is added, and the Cauchy stress tensor is represented as isotropic and
deviatoric components individually:

𝜕(𝜑𝑣𝑥)

𝜕𝑡
+ 𝑣 · ∇(𝜑𝑣𝑥) =

1

𝜌
[∇ · (−𝜑𝑝𝐼) + 𝜑𝜏)]𝑥 − 1

𝜌
𝑓 𝑖
𝑥 + 𝜑𝑔𝑥

Using vector identities to rewrite the advection term, and expanding the fluid stress tensor term:

𝜕(𝜑𝑣𝑥)

𝜕𝑡
+ ∇ · (𝜑𝑣𝑥𝑣) − 𝜑𝑣𝑥(∇ · 𝑣) =

1

𝜌
[−∇𝜑𝑝]𝑥 +

1

𝜌
[∇ · (𝜑𝜏)]𝑥 − 1

𝜌
𝑓 𝑖
𝑥 + 𝜑𝑔𝑥

1.3. Fluid simulation and particle-fluid interaction 9

http://www.cimec.org.ar/ojs/index.php/mc/article/view/486/464
https://en.wikipedia.org/wiki/Cauchy_stress_tensor

sphere Documentation, Release 2.15-beta

Spatial variations in the porosity are neglected,

∇𝜑 := 0

and the pressure is attributed to the fluid phase alone (model B in Zhu et al. 2007 and Zhou et al. 2010). The divergence
of fluid velocities is defined to be zero:

∇ · 𝑣 := 0

With these assumptions, the momentum equation simplifies to:

𝜕(𝜑𝑣𝑥)

𝜕𝑡
+ ∇ · (𝜑𝑣𝑥𝑣) = −1

𝜌

𝜕𝑝

𝜕𝑥
+

1

𝜌
[∇ · (𝜑𝜏)]𝑥 − 1

𝜌
𝑓 𝑖
𝑥 + 𝜑𝑔𝑥

The remaining part of the advection term is for the 𝑥 component found as:

∇ · (𝜑𝑣𝑥𝑣) =

[︂
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

]︂⎡⎣ 𝜑𝑣𝑥𝑣𝑥
𝜑𝑣𝑥𝑣𝑦
𝜑𝑣𝑥𝑣𝑧

⎤⎦ =
𝜕(𝜑𝑣𝑥𝑣𝑥)

𝜕𝑥
+

𝜕(𝜑𝑣𝑥𝑣𝑦)

𝜕𝑦
+

𝜕(𝜑𝑣𝑥𝑣𝑧)

𝜕𝑧

The deviatoric stress tensor is in this case symmetrical, i.e. 𝜏𝑖𝑗 = 𝜏𝑗𝑖, and is found by:

1

𝜌
[∇ · (𝜑𝜏)]𝑥 =

1

𝜌

⎡⎣[︂ 𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

]︂
𝜑

⎡⎣𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

⎤⎦⎤⎦
𝑥

=
1

𝜌

⎡⎢⎣
𝜕(𝜑𝜏𝑥𝑥)

𝜕𝑥 +
𝜕(𝜑𝜏𝑥𝑦)

𝜕𝑦 + 𝜕(𝜑𝜏𝑥𝑧)
𝜕𝑧

𝜕(𝜑𝜏𝑦𝑥)
𝜕𝑥 +

𝜕(𝜑𝜏𝑦𝑦)
𝜕𝑦 +

𝜕(𝜑𝜏𝑦𝑧)
𝜕𝑧

𝜕(𝜑𝜏𝑧𝑥)
𝜕𝑥 +

𝜕(𝜑𝜏𝑧𝑦)
𝜕𝑦 + 𝜕(𝜑𝜏𝑧𝑧)

𝜕𝑧

⎤⎥⎦
𝑥

=
1

𝜌

(︂
𝜕(𝜑𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝜑𝜏𝑥𝑦)

𝜕𝑦
+

𝜕(𝜑𝜏𝑥𝑧)

𝜕𝑧

)︂

In a linear viscous fluid, the stress and strain rate (𝜖̇) is linearly dependent, scaled by the viscosity parameter 𝜇𝑓 :

𝜏𝑖𝑗 = 2𝜇𝑓 𝜖̇𝑖𝑗 = 𝜇𝑓

(︂
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)︂
With this relationship, the deviatoric stress tensor components can be calculated as:

𝜏𝑥𝑥 = 2𝜇𝑓
𝜕𝑣𝑥
𝜕𝑥

𝜏𝑦𝑦 = 2𝜇𝑓
𝜕𝑣𝑦
𝜕𝑦

𝜏𝑧𝑧 = 2𝜇𝑓
𝜕𝑣𝑧
𝜕𝑧

𝜏𝑥𝑦 = 𝜇𝑓

(︂
𝜕𝑣𝑥
𝜕𝑦

+
𝜕𝑣𝑦
𝜕𝑥

)︂
𝜏𝑥𝑧 = 𝜇𝑓

(︂
𝜕𝑣𝑥
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑥

)︂
𝜏𝑦𝑧 = 𝜇𝑓

(︂
𝜕𝑣𝑦
𝜕𝑧

+
𝜕𝑣𝑧
𝜕𝑦

)︂
where 𝜇𝑓 is the dynamic viscosity. The above formulation of the fluid rheology assumes identical bulk and shear
viscosities. The derivation of the equations for the other spatial components is trivial.

1.3.2 Porosity estimation

The solid volume in each fluid cell is determined by the ratio of the a cell-centered spherical cell volume (𝑉𝑐) and the
sum of intersecting particle volumes (𝑉𝑠). The spherical cell volume has a center at 𝑥𝑖, and a radius of 𝑅𝑖, which
is equal to half the fluid cell width. The nearby particles are characterized by position 𝑥𝑗 and radius 𝑟𝑗 . The center
distance is defined as:

𝑑𝑖𝑗 = ||𝑥𝑖 − 𝑥𝑗 ||

10 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

The common volume of the two intersecting spheres is zero if the volumes aren’t intersecting, lens shaped if they are
intersecting, and spherical if the particle is fully contained by the spherical cell volume:

𝑉 𝑠
𝑖 =

∑︁
𝑗

⎧⎪⎨⎪⎩
0 if 𝑅𝑖 + 𝑟𝑗 ≤ 𝑑𝑖𝑗

1
12𝑑𝑖𝑗

[︀
𝜋(𝑅𝑖 + 𝑟𝑗 − 𝑑𝑖𝑗)

2(𝑑2𝑖𝑗 + 2𝑑𝑖𝑗𝑟𝑗 − 3𝑟2𝑗 + 2𝑑𝑖𝑗𝑅𝑖 + 6𝑟𝑗𝑅𝑖 − 3𝑅2
𝑖)
]︀

if 𝑅𝑖 − 𝑟𝑗 < 𝑑𝑖𝑗 < 𝑅𝑖 + 𝑟𝑗
4
3𝜋𝑟

3
𝑗 if 𝑑𝑖𝑗 ≤ 𝑅𝑖 − 𝑟𝑗

Using this method, the cell porosity values are continuous through time as particles enter and exit the cell volume. The
rate of porosity change (𝑑𝜑/𝑑𝑡) is estimated by the backwards Euler method by considering the previous and current
porosity.

1.3.3 Particle-fluid interaction

The momentum exchange of the granular and fluid phases follows the procedure outlined by Gidaspow 1992 and
Shamy and Zhegal 2005. The fluid and particle interaction is based on the concept of drag, where the magnitude is
based on semi-empirical relationships. The drag force scales linearly with the relative difference in velocity between
the fluid and particle phase. On the base of Newton’s third law, the resulting drag force is applied with opposite signs
to the particle and fluid.

For fluid cells with porosities (𝜑) less or equal to 0.8, the drag force is based on the Ergun (1952) equation:

𝑓𝑑 =

(︂
150

𝜇𝑓 (1 − 𝜑)2

𝜑𝑑2
+ 1.75

(1 − 𝜑)𝜌𝑓 ||𝑣𝑓 − 𝑣̄𝑝||
𝑑

)︂
(𝑣𝑓 − 𝑣̄𝑝)

here, 𝑑 denotes the average particle diameter in the cell, 𝑣𝑓 is the fluid flow velocity, and 𝑣̄𝑝 is the average particle
velocity in the cell. All particles in contact with the previously mentioned cell-centered sphere for porosity estimation
contribute to the average particle velocity and diameter in the fluid cell.

If the porosity is greater than 0.8, the cell-averaged drag force (𝑓𝑑 is found from the Wen and Yu (1966) equation,
which considers the fluid flow situation:

𝑓𝑑 =

(︂
3

4

𝐶𝑑(1 − 𝜑)𝜑−2.65𝜇𝑓𝜌𝑓 ||𝑣𝑓 − 𝑣̄𝑝||
𝑑

)︂
(𝑣𝑓 − 𝑣̄𝑝)

The drag coefficient 𝐶𝑑 is evaluated depending on the magnitude of the Reynolds number 𝑅𝑒:

𝐶𝑑 =

{︃
24
𝑅𝑒 (1 + 0.15(𝑅𝑒)0.687 if 𝑅𝑒 < 1, 000

0.44 if 𝑅𝑒 ≥ 1, 000

where the Reynold’s number is found by:

𝑅𝑒 =
𝜑𝜌𝑓𝑑

𝜇𝑓
||𝑣𝑓 − 𝑣̄𝑝||

The interaction force is applied to the fluid with negative sign as a contribution to the body force 𝑓 . The fluid
interaction force applied particles in the fluid cell is:

𝑓 𝑖 =
𝑓𝑑𝑉𝑝

1 − 𝜑

where 𝑉𝑝 denotes the particle volume. Optionally, the above interaction force could be expanded to include the force
induced by the fluid pressure gradient:

𝑓 𝑖 =

(︂
−∇𝑝 +

𝑓𝑑

1 − 𝜑

)︂
𝑉𝑝

1.3. Fluid simulation and particle-fluid interaction 11

sphere Documentation, Release 2.15-beta

1.3.4 Fluid dynamics solution procedure by operator splitting

The partial differential terms in the previously described equations are found using finite central differences. Modify-
ing the operator splitting methodology presented by Langtangen et al. (2002), the predicted velocity 𝑣* after a finite
time step ∆𝑡 is found by explicit integration of the momentum equation.

∆(𝜑𝑣𝑥)

∆𝑡
+ ∇ · (𝜑𝑣𝑥𝑣) = −1

𝜌

∆𝑝

∆𝑥
+

1

𝜌
[∇ · (𝜑𝜏)]𝑥 − 1

𝜌
𝑓 𝑖
𝑥 + 𝜑𝑔𝑥

⇓

𝜑
∆𝑣𝑥
∆𝑡

+ 𝑣𝑥
∆𝜑

∆𝑡
+ ∇ · (𝜑𝑣𝑥𝑣) = −1

𝜌

∆𝑝

∆𝑥
+

1

𝜌
[∇ · (𝜑𝜏)]𝑥 − 1

𝜌
𝑓 𝑖
𝑥 + 𝜑𝑔𝑥

We want to isolate ∆𝑣𝑥 in the above equation in order to project the new velocity.

𝜑
∆𝑣𝑥
∆𝑡

= −1

𝜌

∆𝑝

∆𝑥
+

1

𝜌
[∇ · (𝜑𝜏)]𝑥 − 1

𝜌
𝑓 𝑖
𝑥 + 𝜑𝑔𝑥 − 𝑣𝑥

∆𝜑

∆𝑡
−∇ · (𝜑𝑣𝑥𝑣)

∆𝑣𝑥 = −1

𝜌

∆𝑝

∆𝑥

∆𝑡

𝜑
+

1

𝜌
[∇ · (𝜑𝜏)]𝑥

∆𝑡

𝜑
− ∆𝑡

𝜌𝜑
𝑓 𝑖
𝑥 + ∆𝑡𝑔𝑥 − 𝑣𝑥

∆𝜑

𝜑
−∇ · (𝜑𝑣𝑥𝑣)

∆𝑡

𝜑

The term 𝛽 is introduced as an adjustable, dimensionless parameter in the range [0; 1], and determines the importance
of the old pressure values in the solution procedure (Langtangen et al. 2002). A value of 0 corresponds to Chorin’s
projection method originally described in Chorin (1968).

𝑣*𝑥 = 𝑣𝑡𝑥 + ∆𝑣𝑥

𝑣*𝑥 = 𝑣𝑡𝑥 − 𝛽

𝜌

∆𝑝𝑡

∆𝑥

∆𝑡

𝜑𝑡
+

1

𝜌

[︀
∇ · (𝜑𝑡𝜏 𝑡)

]︀
𝑥

∆𝑡

𝜑
− ∆𝑡

𝜌𝜑
𝑓 𝑖
𝑥 + ∆𝑡𝑔𝑥 − 𝑣𝑡𝑥

∆𝜑

𝜑𝑡
−∇ · (𝜑𝑡𝑣𝑡𝑥𝑣

𝑡)
∆𝑡

𝜑𝑡

Here, ∆𝑥 denotes the cell spacing. The velocity found (𝑣*𝑥) is only a prediction of the fluid velocity at time 𝑡 + ∆𝑡,
since the estimate isn’t constrained by the continuity equation:

∆𝜑𝑡

∆𝑡
+ ∇ · (𝜑𝑡𝑣𝑡+Δ𝑡) = 0

The divergence of a scalar and vector can be split:

𝜑𝑡∇ · 𝑣𝑡+Δ𝑡 + 𝑣𝑡+Δ𝑡 · ∇𝜑𝑡 +
∆𝜑𝑡

∆𝑡
= 0

The predicted velocity is corrected using the new pressure (Langtangen et al. 2002):

𝑣𝑡+Δ𝑡 = 𝑣* − ∆𝑡

𝜌𝜑𝑡
∇𝜖 where 𝜖 = 𝑝𝑡+Δ𝑡 − 𝛽𝑝𝑡

The above formulation of the future velocity is put into the continuity equation:

⇒ 𝜑𝑡∇ ·
(︂
𝑣* − ∆𝑡

𝜌𝜑𝑡
∇𝜖

)︂
+

(︂
𝑣* − ∆𝑡

𝜌𝜑𝑡
∇𝜖

)︂
· ∇𝜑𝑡 +

∆𝜑𝑡

∆𝑡
= 0

⇒ 𝜑𝑡∇ · 𝑣* − ∆𝑡

𝜌𝜑𝑡
𝜑𝑡∇2𝜖 + ∇𝜑𝑡 · 𝑣* −∇𝜑𝑡 · ∇𝜖

∆𝑡

𝜌𝜑𝑡
+

∆𝜑𝑡

∆𝑡
= 0

⇒ ∆𝑡

𝜌
∇2𝜖 = 𝜑𝑡∇ · 𝑣* + ∇𝜑𝑡 · 𝑣* −∇𝜑𝑡 · ∇𝜖

∆𝑡

𝜌𝜑𝑡
+

∆𝜑𝑡

∆𝑡

The pressure difference in time becomes a Poisson equation with added terms:

⇒ ∇2𝜖 =
∇ · 𝑣*𝜑𝑡𝜌

∆𝑡
+

∇𝜑𝑡 · 𝑣*𝜌

∆𝑡
− ∇𝜑𝑡 · ∇𝜖

𝜑𝑡
+

∆𝜑𝑡𝜌

∆𝑡2

12 Chapter 1. Contents

https://en.wikipedia.org/wiki/Projection_method_(fluid_dynamics)#Chorin.27s_projection_method
https://en.wikipedia.org/wiki/Projection_method_(fluid_dynamics)#Chorin.27s_projection_method
http://www.ams.org/journals/mcom/1968-22-104/S0025-5718-1968-0242392-2/S0025-5718-1968-0242392-2.pdf
http://www.wolframalpha.com/input/?i=div(p+v)
https://en.wikipedia.org/wiki/Poisson's_equation

sphere Documentation, Release 2.15-beta

The right hand side of the above equation is termed the forcing function 𝑓 , which is decomposed into two terms, 𝑓1
and 𝑓2:

𝑓1 =
∇ · 𝑣*𝜑𝑡𝜌

∆𝑡
+

∇𝜑𝑡 · 𝑣*𝜌

∆𝑡
+

∆𝜑𝑡𝜌

∆𝑡2

𝑓2 =
∇𝜑𝑡 · ∇𝜖

𝜑𝑡

During the Jacobi iterative solution procedure 𝑓1 remains constant, while 𝑓2 changes value. For this reason, 𝑓1 is
found only during the first iteration, while 𝑓2 is updated every time. The value of the forcing function is found as:

𝑓 = 𝑓1 − 𝑓2

Using second-order finite difference approximations of the Laplace operator second-order partial derivatives, the dif-
ferential equations become a system of equations that is solved using iteratively using Jacobi updates. The total number
of unknowns is (𝑛𝑥 − 1)(𝑛𝑦 − 1)(𝑛𝑧 − 1).

The discrete Laplacian (approximation of the Laplace operator) can be obtained by a finite-difference seven-point
stencil in a three-dimensional, cubic grid with cell spacing ∆𝑥,∆𝑦,∆𝑧, considering the six face neighbors:

∇2𝜖𝑖𝑥,𝑖𝑦,𝑖𝑧 ≈
𝜖𝑖𝑥−1,𝑖𝑦,𝑖𝑧 − 2𝜖𝑖𝑥,𝑖𝑦,𝑖𝑧 + 𝜖𝑖𝑥+1,𝑖𝑦,𝑖𝑧

∆𝑥2
+

𝜖𝑖𝑥,𝑖𝑦−1,𝑖𝑧 − 2𝜖𝑖𝑥,𝑖𝑦,𝑖𝑧 + 𝜖𝑖𝑥,𝑖𝑦+1,𝑖𝑧

∆𝑦2

+
𝜖𝑖𝑥,𝑖𝑦,𝑖𝑧−1 − 2𝜖𝑖𝑥,𝑖𝑦,𝑖𝑧 + 𝜖𝑖𝑥,𝑖𝑦,𝑖𝑧+1

∆𝑧2
≈ 𝑓𝑖𝑥,𝑖𝑦,𝑖𝑧

Within a Jacobi iteration, the value of the unknowns (𝜖𝑛) is used to find an updated solution estimate (𝜖𝑛+1). The
solution for the updated value takes the form:

𝜖𝑛+1
𝑖𝑥,𝑖𝑦,𝑖𝑧

=
−∆𝑥2∆𝑦2∆𝑧2𝑓𝑖𝑥,𝑖𝑦,𝑖𝑧 + ∆𝑦2∆𝑧2(𝜖𝑛𝑖𝑥−1,𝑖𝑦,𝑖𝑧

+ 𝜖𝑛𝑖𝑥+1,𝑖𝑦,𝑖𝑧
) + ∆𝑥2∆𝑧2(𝜖𝑛𝑖𝑥,𝑖𝑦−1,𝑖𝑧

+ 𝜖𝑛𝑖𝑥,𝑖𝑦+1,𝑖𝑧
) + ∆𝑥2∆𝑦2(𝜖𝑛𝑖𝑥,𝑖𝑦,𝑖𝑧−1 + 𝜖𝑛𝑖𝑥,𝑖𝑦,𝑖𝑧+1)

2(∆𝑥2∆𝑦2 + ∆𝑥2∆𝑧2 + ∆𝑦2∆𝑧2)

The difference between the current and updated value is termed the normalized residual:

𝑟𝑖𝑥,𝑖𝑦,𝑖𝑧 =
(𝜖𝑛+1

𝑖𝑥,𝑖𝑦,𝑖𝑧
− 𝜖𝑛𝑖𝑥,𝑖𝑦,𝑖𝑧)2

(𝜖𝑛+1
𝑖𝑥,𝑖𝑦,𝑖𝑧

)2

Note that the 𝜖 values cannot be 0 due to the above normalization of the residual.

The updated values are at the end of the iteration stored as the current values, and the maximal value of the normalized
residual is found. If this value is larger than a tolerance criteria, the procedure is repeated. The iterative procedure is
ended if the number of iterations exceeds a defined limit.

After the values of 𝜖 are found, they are used to find the new pressures and velocities:

𝑝𝑡+Δ𝑡 = 𝛽𝑝𝑡 + 𝜖

𝑣̄𝑡+Δ𝑡 = 𝑣̄* − ∆𝑡

𝜌𝜑
∇𝜖

1.3.5 Boundary conditions

The lateral boundaries are periodic. This cannot be changed in the current version of sphere. This means that the
fluid properties at the paired, parallel lateral (𝑥 and 𝑦) boundaries are identical. A flow leaving through one side
reappears on the opposite side.

The top and bottom boundary conditions of the fluid grid can be either: prescribed pressure (Dirichlet), or prescribed
velocity (Neumann). The (horizontal) velocities parallel to the boundaries are free to attain other values (free slip).
The Dirichlet boundary condition is enforced by keeping the value of 𝜖 constant at the boundaries, e.g.:

𝜖𝑛+1
𝑖𝑥,𝑖𝑦,𝑖𝑧=1∨𝑛𝑧

= 𝜖𝑛𝑖𝑥,𝑖𝑦,𝑖𝑧=1∨𝑛𝑧

1.3. Fluid simulation and particle-fluid interaction 13

http://www.rsmas.miami.edu/personal/miskandarani/Courses/MSC321/Projects/prjpoisson.pdf
https://en.wikipedia.org/wiki/Relaxation_(iterative_method)

sphere Documentation, Release 2.15-beta

The Neumann boundary condition of no flow across the boundary is enforced by setting the gradient of 𝜖 perpendicular
to the boundary to zero, e.g.:

∇𝑧𝜖
𝑛+1
𝑖𝑥,𝑖𝑦,𝑖𝑧=1∨𝑛𝑧

= 0

1.3.6 Numerical implementation

Ghost nodes

—

1.4 Python API

The Python module sphere is intended as the main interface to the sphere application. It is recommended to use
this module for simulation setup, simulation execution, and analysis of the simulation output data.

In order to use the API, the file sphere.py must be placed in the same directory as the Python files.

1.4.1 Sample usage

Below is a simple, annotated example of how to setup, execute, and post-process a sphere simulation. The example
is also found in the python/ folder as collision.py.

1 #!/usr/bin/env python
2 '''
3 Example of two particles colliding.
4 Place script in sphere/python/ folder, and invoke with `python collision.py`
5 '''
6

7 # Import the sphere module for setting up, running, and analyzing the
8 # experiment. We also need the numpy module when setting arrays in the sphere
9 # object.

10 import sphere
11 import numpy
12

13

14 ### SIMULATION SETUP
15

16 # Create a sphere object with two preallocated particles and a simulation ID
17 SB = sphere.sim(np = 2, sid = 'collision')
18

19 SB.radius[:] = 0.3 # set radii to 0.3 m
20

21 # Define the positions of the two particles
22 SB.x[0, :] = numpy.array([10.0, 5.0, 5.0]) # particle 1 (idx 0)
23 SB.x[1, :] = numpy.array([11.0, 5.0, 5.0]) # particle 2 (idx 1)
24

25 # The default velocity is [0,0,0]. Slam particle 1 into particle 2 by defining
26 # a positive x velocity for particle 1.
27 SB.vel[0, 0] = 1.0
28

29 # Set the world limits and the particle sorting grid. The particles need to stay
30 # within the world limits for the entire simulation, otherwise it will stop!

(continues on next page)

14 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

(continued from previous page)

31 SB.initGridAndWorldsize(margin = 5.0)
32

33 # Define the temporal parameters, e.g. the total time (total) and the file
34 # output interval (file_dt), both in seconds
35 SB.initTemporal(total = 2.0, file_dt = 0.1)
36

37 # Using a 'dry' run, the sphere main program will display important parameters.
38 # sphere will end after displaying these values.
39 SB.run(dry = True)
40

41

42 ### RUNNING THE SIMULATION
43

44 # Start the simulation on the GPU from the sphere program
45 SB.run()
46

47

48 ### ANALYSIS OF SIMULATION RESULTS
49

50 # Plot the system energy through time, image saved as collision-energy.png
51 SB.visualize(method = 'energy')
52

53 # Render the particles using the built-in raytracer
54 SB.render()
55

56 # Alternative visualization using ParaView. See the documentation of
57 # ``sim.writeVTKall()`` for more information about displaying the
58 # particles in ParaView.
59 SB.writeVTKall()

The full documentation of the sphere Python API can be found below.

1.4.2 The sphere module

sphere.V_sphere(r)
Calculates the volume of a sphere with radius r

Returns The sphere volume [m^3]

Return type float

sphere.cleanup(sim)
Removes the input/output files and images belonging to the object simulation ID from the input/, output/
and img_out/ folders.

Parameters spherebin (sim) – A sim object

sphere.convert(graphics_format=’png’, folder=’../img_out’, remove_ppm=False)
Converts all PPM images in img_out to graphics_format using ImageMagick. All PPM images are subsequently
removed if remove_ppm is True.

Parameters

• graphics_format (str) – Convert the images to this format

• folder (str) – The folder containing the PPM images to convert

• remove_ppm (bool) – Remove ALL ppm files in folder after conversion

1.4. Python API 15

sphere Documentation, Release 2.15-beta

sphere.render(binary, method=’pres’, max_val=1000.0, lower_cutoff=0.0, graphics_format=’png’, ver-
bose=True)

Render target binary using the sphere raytracer.

Parameters

• method (str) – The color visualization method to use for the particles. Possible val-
ues are: ‘normal’: color all particles with the same color, ‘pres’: color by pressure, ‘vel’:
color by translational velocity, ‘angvel’: color by rotational velocity, ‘xdisp’: color by total
displacement along the x-axis, ‘angpos’: color by angular position.

• max_val (float) – The maximum value of the color bar

• lower_cutoff (float) – Do not render particles with a value below this value, of the
field selected by method

• graphics_format (str) – Convert the PPM images generated by the ray tracer to this
image format using Imagemagick

• verbose (bool) – Show verbose information during ray tracing

sphere.run(binary, verbose=True, hideinputfile=False)
Execute sphere with target binary file as input.

Parameters

• binary (str) – Input file for sphere

• verbose (bool) – Show sphere output

• hideinputfile (bool) – Hide the input file

class sphere.sim(sid=’unnamed’, np=0, nd=3, nw=0, fluid=False, cfd_solver=0)
Class containing all sphere data.

Contains functions for reading and writing binaries, as well as simulation setup and data analysis. Most arrays
are initialized to default values.

Parameters

• np (int) – The number of particles to allocate memory for (default=1)

• nd (int) – The number of spatial dimensions (default=3). Note that 2D and 1D simulations
currently are not possible.

• nw (int) – The number of dynamic walls (default=1)

• sid (str) – The simulation id (default=’unnamed’). The simulation files will be written
with this base name.

• fluid (bool) – Setup fluid simulation (default=False)

• cfd_solver (int) – Fluid solver to use if fluid == True. 0: Navier-Stokes (default), 1:
Darcy.

ReynoldsNumber()
Estimate the per-cell Reynolds number by: Re=rho * ||v_f|| * dx/mu. This value is returned and also stored
in self.Re.

Returns Reynolds number

Return type Numpy array with dimensions like the fluid grid

acceleration(idx=-1)
Returns the acceleration of one or more particles, selected by their index. If the index is equal to -1 (default
value), all accelerations are returned.

16 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

Parameters idx (int, list or numpy.array) – Index or index range of particles

Returns n-by-3 matrix of acceleration(s)

Return type numpy.array

adaptiveGrid()
Set the height of the fluid grid to automatically readjust to the height of the granular assemblage, as dictated
by the position of the top wall. This will readjust self.L[2] during the simulation to equal the position of
the top wall self.w_x[0].

See also staticGrid()

addParticle(x, radius, xyzsum=array([0., 0., 0.]), vel=array([0., 0., 0.]), fixvel=array([0.]),
force=array([0., 0., 0.]), angpos=array([0., 0., 0.]), angvel=array([0., 0., 0.]),
torque=array([0., 0., 0.]), es_dot=array([0.]), es=array([0.]), ev_dot=array([0.]),
ev=array([0.]), p=array([0.]), color=0)

Add a single particle to the simulation object. The only required parameters are the position (x) and the
radius (radius).

Parameters

• x (numpy.array) – A vector pointing to the particle center coordinate.

• radius (float) – The particle radius

• vel (numpy.array) – The particle linear velocity (default=[0,0,0])

• fixvel (float) – 0: Do not fix particle velocity (default), 1: Fix horizontal linear
velocity, -1: Fix horizontal and vertical linear velocity

• angpos (numpy.array) – The particle angular position (default=[0,0,0])

• angvel (numpy.array) – The particle angular velocity (default=[0,0,0])

• torque (numpy.array) – The particle torque (default=[0,0,0])

• es_dot (float) – The particle shear energy loss rate (default=0)

• es (float) – The particle shear energy loss (default=0)

• ev_dot (float) – The particle viscous energy rate loss (default=0)

• ev (float) – The particle viscous energy loss (default=0)

• p (float) – The particle pressure (default=0)

adjustUpperWall(z_adjust=1.1)
Included for legacy purposes, calls adjustWall() with idx=0.

Parameters z_adjust (float) – Increase the world and grid size by this amount to allow
for wall movement.

adjustWall(idx, adjust=1.1)
Adjust grid and dynamic wall to max. particle position. The wall thickness will by standard equal the
maximum particle diameter. The density equals the particle density, and the wall size is equal to the width
and depth of the simulation domain (self.L[0] and self.L[1]).

Param idx: The wall to adjust. 0=+z, upper wall (default), 1=-x, left wall, 2=+x, right wall,
3=-y, front wall, 4=+y, back wall.

Parameters adjust (float) – Increase the world and grid size by this amount to allow for
wall movement.

bond(i, j)
Create a bond between particles with index i and j

1.4. Python API 17

sphere Documentation, Release 2.15-beta

Parameters

• i (int) – Index of first particle in bond

• j (int) – Index of second particle in bond

bondsRose(graphics_format=’pdf’)
Visualize the trend and plunge angles of the bond pairs in a rose plot. The plot is saved in the current folder
as ‘bonds-<simulation id>-rose.<graphics_format>’.

Parameters graphics_format (str) – Save the plot in this format

bulkPorosity(trim=True)
Calculates the bulk porosity of the particle assemblage.

Parameters trim (bool) – Trim the total volume to the smallest axis-parallel cube containing
all particles.

Returns The bulk porosity, in [0:1]

Return type float

cellSize()
Calculate the particle sorting (and fluid) cell dimensions. These values are stored in self.dx and are NOT
returned.

checkerboardColors(nx=6, ny=6, nz=6)
Assign checkerboard color values to the particles in an orthogonal grid.

Parameters

• nx (int) – Number of color values along the x axis

• ny (int) – Number of color values along the y ayis

• nz (int) – Number of color values along the z azis

cleanup()
Removes the input/output files and images belonging to the object simulation ID from the input/,
output/ and img_out/ folders.

consolidate(normal_stress=10000.0)
Setup consolidation experiment. Specify the upper wall normal stress in Pascal, default value is 10 kPa.

Parameters normal_stress (float) – The normal stress to apply from the upper wall

contactModel(contactmodel)
Define which contact model to use for the tangential component of particle-particle interactions. The
elastic-viscous-frictional contact model (2) is considered to be the most realistic contact model, while the
viscous-frictional contact model is significantly faster.

Parameters contactmodel (int) – The type of tangential contact model to use (visco-
frictional=1, elasto-visco-frictional=2)

contactParticleArea(i, j)
Finds the average area of an two particles in an inter-particle contact.

Parameters

• i (int or array of ints) – Index of first particle

• j (int or array of ints) – Index of second particle

• d (float or array of floats) – Overlap distance

Returns Contact area [m*m]

18 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

Return type float or array of floats

contactSurfaceArea(i, j, overlap)
Finds the contact surface area of an inter-particle contact.

Parameters

• i (int or array of ints) – Index of first particle

• j (int or array of ints) – Index of second particle

• d (float or array of floats) – Overlap distance

Returns Contact area [m*m]

Return type float or array of floats

convergence()
Read the convergence evolution in the CFD solver. The values are stored in self.conv with iteration number
in the first column and iteration count in the second column.

See also: plotConvergence()

createBondPair(i, j, spacing=-0.1)
Bond particles i and j. Particle j is moved adjacent to particle i, and oriented randomly.

Parameters

• i (int) – Index of first particle in bond

• j (int) – Index of second particle in bond

• spacing (float) – The inter-particle distance prescribed. Positive values result in a
inter-particle distance, negative equal an overlap. The value is relative to the sum of the
two radii.

currentNormalStress(type=’defined’)
Calculates the current magnitude of the defined or effective top wall normal stress.

Parameters type (str) – Find the ‘defined’ (default) or ‘effective’ normal stress

Returns The current top wall normal stress in Pascal

Return type float

currentTime(value=-1)
Get or set the current time. If called without arguments the current time is returned. If a new time is passed
in the ‘value’ argument, the time is written to the object.

Parameters value (float) – The new current time

Returns The current time

Return type float

defaultParams(mu_s=0.5, mu_d=0.5, mu_r=0.0, rho=2600, k_n=1160000000.0,
k_t=1160000000.0, k_r=0, gamma_n=0.0, gamma_t=0.0, gamma_r=0.0,
gamma_wn=0.0, gamma_wt=0.0, capillaryCohesion=0)

Initialize particle parameters to default values.

Parameters

• mu_s (float) – The coefficient of static friction between particles [-]

• mu_d (float) – The coefficient of dynamic friction between particles [-]

• rho (float) – The density of the particle material [kg/(m^3)]

1.4. Python API 19

sphere Documentation, Release 2.15-beta

• k_n (float) – The normal stiffness of the particles [N/m]

• k_t (float) – The tangential stiffness of the particles [N/m]

• k_r (float) – The rolling stiffness of the particles [N/rad] Parameter not used

• gamma_n (float) – Particle-particle contact normal viscosity [Ns/m]

• gamma_t (float) – Particle-particle contact tangential viscosity [Ns/m]

• gamma_r (float) – Particle-particle contact rolling viscosity Parameter not used

• gamma_wn (float) – Wall-particle contact normal viscosity [Ns/m]

• gamma_wt (float) – Wall-particle contact tangential viscosity [Ns/m]

• capillaryCohesion (int) – Enable particle-particle capillary cohesion interaction
model (0=no (default), 1=yes)

defineWorldBoundaries(L, origo=[0.0, 0.0, 0.0], dx=-1)
Set the boundaries of the world. Particles will only be able to interact within this domain. With dynamic
walls, allow space for expansions. Important: The particle radii have to be set beforehand. The world
edges act as static walls.

Parameters

• L (numpy.array) – The upper boundary of the domain [m]

• origo (numpy.array) – The lower boundary of the domain [m]. Negative values
won’t work. Default=[0.0, 0.0, 0.0].

• dx (float) – The cell width in any direction. If the default value is used (-1), the cell
width is calculated to fit the largest particle.

deleteAllParticles()
Deletes all particles in the simulation object.

deleteParticle(i)
Delete particle(s) with index i.

Parameters i (int, list or numpy.array) – One or more particle indexes to delete

disableFluidPressureModulation()
Set the parameters for the sine wave modulating the fluid pressures at the top boundary to zero.

See also: setFluidPressureModulation()

disableTopWallNormalStressModulation()
Set the parameters for the sine wave modulating the normal stress at the top dynamic wall to zero.

See also: setTopWallNormalStressModulation()

dry()
Set the simulation to be dry (no fluids).

See also wet()

energy(method)
Calculates the sum of the energy components of all particles.

Parameters method (str) – The type of energy to return. Possible values are ‘pot’ for poten-
tial energy [J], ‘kin’ for kinetic energy [J], ‘rot’ for rotational energy [J], ‘shear’ for energy
lost by friction, ‘shearrate’ for the rate of frictional energy loss [W], ‘visc_n’ for viscous
losses normal to the contact [J], ‘visc_n_rate’ for the rate of viscous losses normal to the
contact [W], and finally ‘bondpot’ for the potential energy stored in bonds [J]

20 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

Returns The value of the selected energy type

Return type float

findAllAverageParticlePairAreas()
Finds the average area of an inter-particle contact. This function requires a prior call to
findOverlaps() as it reads from the self.pairs and self.overlaps arrays.

Returns Array of contact surface areas

Return type array of floats

findAllContactSurfaceAreas()
Finds the contact surface area of an inter-particle contact. This function requires a prior call to
findOverlaps() as it reads from the self.pairs and self.overlaps arrays.

Returns Array of contact surface areas

Return type array of floats

findContactStresses(area=’average’)
Finds all particle-particle uniaxial normal stresses (by first calling findNormalForces()) and calcu-
lating the stress magnitudes by dividing the normal force magnitude with the average particle area (‘aver-
age’) or by the contact surface area (‘contact’).

The result is saved in self.sigma_contacts.

Parameters area (str) – Area to use: ‘average’ (default) or ‘contact’

See also: findNormalForces() and findOverlaps()

findCoordinationNumber()
Finds the coordination number (the average number of contacts per particle). Requires a previous call to
findOverlaps(). Values are stored in self.coordinationnumber.

findHydraulicConductivities()
Calculates the hydrological conductivities from the Kozeny-Carman relationship. These values are only
relevant when the Darcy solver is used (self.cfd_solver=1). The permeability pre-factor self.k_c and the
assemblage porosities must be set beforehand. The former values are set if a file from the output/ folder is
read using self.readbin.

findLoadedContacts(threshold)
Finds the indices of contact pairs where the contact stress magnitude exceeds or is equal to a specified
threshold value. This function calls findContactStresses().

Parameters threshold (float) – Threshold contact stress [Pa]

Returns Array of contact indices

Return type array of ints

findMeanCoordinationNumber()
Returns the coordination number (the average number of contacts per particle). Requires a previous call to
findOverlaps()

Returns The mean particle coordination number

Return type float

findNormalForces()
Finds all particle-particle overlaps (by first calling findOverlaps()) and calculating the normal mag-
nitude by multiplying the overlaps with the elastic stiffness self.k_n.

The result is saved in self.f_n_magn.

1.4. Python API 21

sphere Documentation, Release 2.15-beta

See also: findOverlaps() and findContactStresses()

findOverlaps()
Find all particle-particle overlaps by a n^2 contact search, which is done in C++. The particle pair indexes
and the distance of the overlaps is saved in the object itself as the .pairs and .overlaps members.

See also: findNormalForces()

findPermeabilities()
Calculates the hydrological permeabilities from the Kozeny-Carman relationship. These values are only
relevant when the Darcy solver is used (self.cfd_solver=1). The permeability pre-factor self.k_c and the
assemblage porosities must be set beforehand. The former values are set if a file from the output/ folder is
read using self.readbin.

forcechains(lc=200.0, uc=650.0, outformat=’png’, disp=’2d’)
Visualizes the force chains in the system from the magnitude of the normal contact forces, and produces
an image of them. Warning: Will segfault if no contacts are found.

Parameters

• lc (float) – Lower cutoff of contact forces. Contacts below are not visualized

• uc (float) – Upper cutoff of contact forces. Contacts above are visualized with this
value

• outformat (str) – Format of output image. Possible values are ‘interactive’, ‘png’,
‘epslatex’, ‘epslatex-color’

• disp (str) – Display forcechains in ‘2d’ or ‘3d’

forcechainsRose(lower_limit=0.25, graphics_format=’pdf’)
Visualize trend and plunge angles of the strongest force chains in a rose plot. The plots are saved in the
current folder with the name ‘fc-<simulation id>-rose.pdf’.

Parameters

• lower_limit (float) – Do not visualize force chains below this relative contact force
magnitude, in]0;1[

• graphics_format (str) – Save the plot in this format

frictionalEnergy(idx)
Returns the frictional dissipated energy for a particle.

Parameters idx (int) – Particle index

Returns The frictional energy lost of the particle [J]

Return type float

generateBimodalRadii(r_small=0.005, r_large=0.05, ratio=0.2, verbose=True)
Draw random radii from two distinct sizes.

Parameters

• r_small (float) – Radii of small population [m], in]0;r_large[

• r_large (float) – Radii of large population [m], in]r_small;inf[

• ratio (float) – Approximate volumetric ratio between the two populations
(large/small).

See also: generateRadii().

22 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

generateRadii(psd=’logn’, mean=0.00044, variance=8.8e-09, histogram=False)
Draw random particle radii from a selected probability distribution. The larger the variance of radii is,
the slower the computations will run. The reason is two-fold: The smallest particle dictates the time step
length, where smaller particles cause shorter time steps. At the same time, the largest particle determines
the sorting cell size, where larger particles cause larger cells. Larger cells are likely to contain more
particles, causing more contact checks.

Parameters

• psd (str) – The particle side distribution. One possible value is logn, which is a
log-normal probability distribution, suitable for approximating well-sorted, coarse sedi-
ments. The other possible value is uni, which is a uniform distribution from mean -
variance to mean + variance.

• mean (float) – The mean radius [m] (default=440e-6 m)

• variance (float) – The variance in the probability distribution [m].

See also: generateBimodalRadii().

hydraulicConductivity(phi=0.35)
Determine the hydraulic conductivity (K) [m/s] from the permeability prefactor and a chosen porosity.
This value is stored in self.K_c. This function only works for the Darcy solver (self.cfd_solver == 1)

Parameters phi (float) – The porosity to use in the Kozeny-Carman relationship

Returns The hydraulic conductivity [m/s]

Return type float

hydraulicDiffusivity()
Determine the hydraulic diffusivity (D) [m*m/s]. The result is stored in self.D. This function only works
for the Darcy solver (self.cfd_solver[0] == 1)

hydraulicPermeability(phi_min=0.3, phi_max=0.99)
Determine the hydraulic permeability (k) [m*m] from the Kozeny-Carman relationship, using the perme-
ability prefactor (self.k_c), and the range of valid porosities set in src/darcy.cuh, by default in the range 0.1
to 0.9.

This function is only valid for the Darcy solver (self.cfd_solver == 1).

id(sid=”)
Returns or sets the simulation id/name, which is used to identify simulation files in the output folders.

Parameters sid (str) – The desired simulation id. If left blank the current simulation id will
be returned.

Returns The current simulation id if no new value is set.

Return type str

idAppend(string)
Append a string to the simulation id/name, which is used to identify simulation files in the output folders.

Parameters string (str) – The string to append to the simulation id (self.sid).

inertiaParameterPlanarShear()
Returns the value of the inertia parameter I during planar shear proposed by GDR-MiDi 2004.

Returns The value of I

Return type float

See also: shearStrainRate() and shearVel()

1.4. Python API 23

sphere Documentation, Release 2.15-beta

initFluid(mu=0.00089, rho=1000.0, p=0.0, hydrostatic=False, cfd_solver=0)
Initialize the fluid arrays and the fluid viscosity. The default value of mu equals the dynamic viscosity of
water at 25 degrees Celcius. The value for water at 0 degrees Celcius is 17.87e-4 kg/(m*s).

Parameters

• mu (float) – The fluid dynamic viscosity [kg/(m*s)]

• rho (float) – The fluid density [kg/(m^3)]

• p – The hydraulic pressure to initialize the cells to. If the parameter hydrostatic is set to
True, this value will apply to the fluid cells at the top

• hydrostatic (bool) – Initialize the fluid pressures to the hydrostatic pressure distri-
bution. A pressure gradient with depth is only created if a gravitational acceleration along
𝑧 previously has been specified

• cfd_solver (int) – Solver to use for the computational fluid dynamics. Accepted
values: 0 (Navier Stokes, default) and 1 (Darcy).

initGrid(dx=-1)
Initialize grid suitable for the particle positions set previously. The margin parameter adjusts the distance
(in no. of max. radii) from the particle boundaries. Important: The particle radii have to be set beforehand
if the cell width isn’t specified by dx.

Parameters dx (float) – The cell width in any direction. If the default value is used (-1), the
cell width is calculated to fit the largest particle.

initGridAndWorldsize(margin=2.0)
Initialize grid suitable for the particle positions set previously. The margin parameter adjusts the distance
(in no. of max. radii) from the particle boundaries. If the upper wall is dynamic, it is placed at the top
boundary of the world.

Parameters margin (float) – Distance to world boundary in no. of max. particle radii

initGridPos(gridnum=array([12, 12, 36]))
Initialize particle positions in loose, cubic configuration. gridnum is the number of cells in the x, y and
z directions. Important: The particle radii and the boundary conditions (periodic or not) for the x and y
boundaries have to be set beforehand.

Parameters gridnum (numpy.array) – The number of particles in x, y and z directions

initRandomGridPos(gridnum=array([12, 12, 32]), padding=2.1)
Initialize particle positions in loose, cubic configuration with some variance. gridnum is the number
of cells in the x, y and z directions. Important: The particle radii and the boundary conditions (periodic
or not) for the x and y boundaries have to be set beforehand. The world size and grid height (in the z
direction) is readjusted to fit the particle positions.

Parameters

• gridnum (numpy.array) – The number of particles in x, y and z directions

• padding (float) – Increase distance between particles in x, y and z directions with this
multiplier. Large values create more random packings.

initRandomPos(gridnum=array([12, 12, 36]))
Initialize particle positions in completely random configuration. Radii must be set beforehand. If the x and
y boundaries are set as periodic, the particle centers will be placed all the way to the edge. On regular,
non-periodic boundaries, the particles are restrained at the edges to make space for their radii within the
bounding box.

Parameters

24 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

• gridnum (numpy.array) – The number of sorting cells in each spatial direction (de-
fault=[12, 12, 36])

• dx (float) – The cell width in any direction. If the default value is used (-1), the cell
width is calculated to fit the largest particle.

initTemporal(total, current=0.0, file_dt=0.05, step_count=0, dt=-1, epsilon=0.01)
Set temporal parameters for the simulation. Important: Particle radii, physical parameters, and the op-
tional fluid grid need to be set prior to these if the computational time step (dt) isn’t set explicitly. If the
parameter dt is the default value (-1), the function will estimate the best time step length. The value of
the computational time step for the DEM is checked for stability in the CFD solution if fluid simulation is
included.

Parameters

• total (float) – The time at which to end the simulation [s]

• current – The current time [s] (default=0.0 s)

• file_dt – The interval between output files [s] (default=0.05 s)

• dt – The computational time step length [s]

• epsilon (float) – Time step multiplier (default=0.01)

Step_count The number of the first output file (default=0)

kineticEnergy(idx)
Returns the (linear) kinetic energy for a particle.

Parameters idx (int) – Particle index

Returns The kinetic energy of the particle [J]

Return type float

largestFluidTimeStep(safety=0.5, v_max=-1.0)
Finds and returns the largest time step in the fluid phase by von Neumann and Courant-Friedrichs-Lewy
analysis given the current velocities. This ensures stability in the diffusive and advective parts of the
momentum equation.

The value of the time step decreases with increasing fluid viscosity (self.mu), and increases with fluid cell
size (self.L/self.num)

and fluid velocities (self.v_f)

Parameters

• safety (float) – Safety factor which is multiplied to the largest time step.

• v_max (float) – The largest anticipated absolute fluid velocity [m/s]

Returns The largest timestep stable for the current fluid state.

Return type float

largestMass()
Returns the mass of the heaviest particle.

Parameters idx (int) – Particle index

Returns The mass of the particle [kg]

Return type float

mass(idx)
Returns the mass of a particle.

1.4. Python API 25

sphere Documentation, Release 2.15-beta

Parameters idx (int) – Particle index

Returns The mass of the particle [kg]

Return type float

momentOfInertia(idx)
Returns the moment of inertia of a particle.

Parameters idx (int) – Particle index

Returns The moment of inertia [kg*m^2]

Return type float

momentum(idx)
Returns the momentum (m*v) of a particle.

Parameters idx (int) – The particle index

Returns The particle momentum [N*s]

Return type numpy.array

normalBoundariesXY()
Set the x and y boundary conditions to be static walls.

See also periodicBoundariesXY() and periodicBoundariesX()

periodicBoundariesX()
Set the x boundary conditions to be periodic.

See also normalBoundariesXY() and periodicBoundariesXY()

periodicBoundariesXY()
Set the x and y boundary conditions to be periodic.

See also normalBoundariesXY() and periodicBoundariesX()

plotContacts(graphics_format=’png’, figsize=[4, 4], title=None, lower_limit=0.0, upper_limit=1.0,
alpha=1.0, return_data=False, outfolder=’.’, f_min=None, f_max=None, his-
togram=True, forcechains=True)

Plot current contact orientations on polar plot

Parameters

• lower_limit (float) – Do not visualize force chains below this relative contact force
magnitude, in]0;1[

• upper_limit (float) – Visualize force chains above this relative contact force mag-
nitude but cap color bar range, in]0;1[

• graphics_format (str) – Save the plot in this format

plotConvergence(graphics_format=’png’, verbose=True)
Plot the convergence evolution in the CFD solver. The plot is saved in the output folder with the file name
‘<simulation id>-conv.<graphics_format>’.

Parameters

• graphics_format (str) – Save the plot in this format

• verbose (bool) – Print output filename after saving

See also: convergence()

26 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

plotFluidDiffAdvPresZ(graphics_format=’png’, verbose=True)
Compare contributions to the velocity from diffusion and advection, assuming the flow is 1D along the
z-axis, phi=1, and dphi=0. This solution is analog to the predicted velocity and not constrained by the
conservation of mass. The plot is saved in the output folder with the name format ‘<simulation id>-
diff_adv-t=<current time>s-mu=<dynamic viscosity>Pa-s.<graphics_format>’.

Parameters

• graphics_format (str) – Save the plot in this format

• verbose (bool) – Print output filename after saving

plotFluidPressuresY(y=-1, graphics_format=’png’, verbose=True)
Plot fluid pressures in a plane normal to the second axis. The plot is saved in the current folder with the
format ‘p_f-<simulation id>-y<y value>.<graphics_format>’.

Parameters

• y (int) – Plot pressures in fluid cells with these y axis values. If this value is -1, the center
y position is used.

• graphics_format (str) – Save the plot in this format

• verbose (bool) – Print output filename after saving

See also: writeFluidVTK() and plotFluidPressuresZ()

plotFluidPressuresZ(z=-1, graphics_format=’png’, verbose=True)
Plot fluid pressures in a plane normal to the third axis. The plot is saved in the current folder with the
format ‘p_f-<simulation id>-z<z value>.<graphics_format>’.

Parameters

• z (int) – Plot pressures in fluid cells with these z axis values. If this value is -1, the center
z position is used.

• graphics_format (str) – Save the plot in this format

• verbose (bool) – Print output filename after saving

See also: writeFluidVTK() and plotFluidPressuresY()

plotFluidVelocitiesY(y=-1, graphics_format=’png’, verbose=True)
Plot fluid velocities in a plane normal to the second axis. The plot is saved in the current folder with the
format ‘v_f-<simulation id>-z<z value>.<graphics_format>’.

Parameters

• y (int) – Plot velocities in fluid cells with these y axis values. If this value is -1, the
center y position is used.

• graphics_format (str) – Save the plot in this format

• verbose (bool) – Print output filename after saving

See also: writeFluidVTK() and plotFluidVelocitiesZ()

plotFluidVelocitiesZ(z=-1, graphics_format=’png’, verbose=True)
Plot fluid velocities in a plane normal to the third axis. The plot is saved in the current folder with the
format ‘v_f-<simulation id>-z<z value>.<graphics_format>’.

Parameters

• z (int) – Plot velocities in fluid cells with these z axis values. If this value is -1, the
center z position is used.

1.4. Python API 27

sphere Documentation, Release 2.15-beta

• graphics_format (str) – Save the plot in this format

• verbose (bool) – Print output filename after saving

See also: writeFluidVTK() and plotFluidVelocitiesY()

plotLoadCurve(graphics_format=’png’, verbose=True)
Plot the load curve (log time vs. upper wall movement). The plot is saved in the current folder with the
file name ‘<simulation id>-loadcurve.<graphics_format>’. The consolidation coefficient calculations are
done on the base of Bowles 1992, p. 129–139, using the “Casagrande” method. It is assumed that the
consolidation has stopped at the end of the simulation (i.e. flat curve).

Parameters

• graphics_format (str) – Save the plot in this format

• verbose (bool) – Print output filename after saving

plotPrescribedFluidPressures(graphics_format=’png’, verbose=True)
Plot the prescribed fluid pressures through time that may be modulated through the class parameters
p_mod_A, p_mod_f, and p_mod_phi. The plot is saved in the output folder with the file name ‘<sim-
ulation id>-pres.<graphics_format>’.

plotSinFunction(baseval, A, f, phi=0.0, xlabel=’t [s]’, ylabel=’y’, plotstyle=’.’, outfor-
mat=’png’)

Plot the values of a sinusoidal modulated base value. Saves the output as a plot in the current folder. The
time values will range from self.time_current to self.time_total.

Parameters

• baseval (float) – The center value which the sinusoidal fluctuations are modulating

• A (float) – The fluctuation amplitude

• phi (float) – The phase shift [s]

• xlabel (str) – The label for the x axis

• ylabel (str) – The label for the y axis

• plotstyle (str) – Matplotlib-string for specifying plotting style

• outformat (str) – File format of the output plot

• verbose (bool) – Print output filename after saving

porosities(graphics_format=’pdf’, zslices=16)
Plot the averaged porosities with depth. The plot is saved in the format ‘<simulation id>-
porosity.<graphics_format>’.

Parameters

• graphics_format (str) – Save the plot in this format

• zslices (int) – The number of points along the vertical axis to sample the porosity in

porosity(slices=10, verbose=False)
Calculates the porosity as a function of depth, by averaging values in horizontal slabs. Returns porosity
values and their corresponding depth. The values are calculated using the external porosity program.

Parameters

• slices (int) – The number of vertical slabs to find porosities in.

• verbose (bool) – Show the file name of the temporary file written to disk

Returns A 2d array of depths and their averaged porosities

28 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

Return type numpy.array

randomBondPairs(ratio=0.3, spacing=-0.1)
Bond an amount of particles in two-particle clusters. The particles should be initialized beforehand. Note:
The actual number of bonds is likely to be somewhat smaller than specified, due to the random selection
algorithm.

Parameters

• ratio (float) – The amount of particles to bond, values in]0.0;1.0]

• spacing (float) – The distance relative to the sum of radii between bonded particles,
neg. values denote an overlap. Values in]0.0,inf[.

readTime(time, verbose=True)
Read the output file most closely corresponding to the time given as an argument.

Parameters time (float) – The desired current time [s]

See also readbin(), readfirst(), readsecond(), and readstep().

readbin(targetbin, verbose=True, bonds=True, sigma0mod=True, esysparticle=False)
Reads a target sphere binary file.

See also writebin(), readfirst(), readlast(), readsecond(), and readstep().

Parameters

• targetbin (str) – The path to the binary sphere file

• verbose (bool) – Show diagnostic information (default=True)

• bonds (bool) – The input file contains bond information (default=True). This parameter
should be true for all recent sphere versions.

• sigma0mod (bool) – The input file contains information about modulating stresses at
the top wall (default=True). This parameter should be true for all recent sphere versions.

• esysparticle (bool) – Stop reading the file after reading the kinematics, which is
useful for reading output files from other DEM programs. (default=False)

readfirst(verbose=True)
Read the first output file from the ../output/ folder, corresponding to the object simulation id (self.
sid).

Parameters verbose (bool) – Display diagnostic information (default=True)

See also readbin(), readlast(), readsecond(), and readstep().

readlast(verbose=True)
Read the last output file from the ../output/ folder, corresponding to the object simulation id (self.
sid).

Parameters verbose (bool) – Display diagnostic information (default=True)

See also readbin(), readfirst(), readsecond(), and readstep().

readsecond(verbose=True)
Read the second output file from the ../output/ folder, corresponding to the object simulation id
(self.sid).

Parameters verbose (bool) – Display diagnostic information (default=True)

See also readbin(), readfirst(), readlast(), and readstep().

1.4. Python API 29

sphere Documentation, Release 2.15-beta

readstep(step, verbose=True)
Read a output file from the ../output/ folder, corresponding to the object simulation id (self.sid).

Parameters

• step (int) – The output file number to read, starting from 0.

• verbose (bool) – Display diagnostic information (default=True)

See also readbin(), readfirst(), readlast(), and readsecond().

render(method=’pres’, max_val=1000.0, lower_cutoff=0.0, graphics_format=’png’, verbose=True)
Using the built-in ray tracer, render all output files that belong to the simulation, determined by the simu-
lation id (sid).

Parameters

• method (str) – The color visualization method to use for the particles. Possible values
are: ‘normal’: color all particles with the same color, ‘pres’: color by pressure, ‘vel’:
color by translational velocity, ‘angvel’: color by rotational velocity, ‘xdisp’: color by
total displacement along the x-axis, ‘angpos’: color by angular position.

• max_val (float) – The maximum value of the color bar

• lower_cutoff (float) – Do not render particles with a value below this value, of the
field selected by method

• graphics_format (str) – Convert the PPM images generated by the ray tracer to
this image format using Imagemagick

• verbose (bool) – Show verbose information during ray tracing

rotationalEnergy(idx)
Returns the rotational energy for a particle.

Parameters idx (int) – Particle index

Returns The rotational kinetic energy of the particle [J]

Return type float

run(verbose=True, hideinputfile=False, dry=False, valgrind=False, cudamemcheck=False, device=-1)
Start sphere calculations on the sim object

Parameters

• verbose (bool) – Show sphere output

• hideinputfile (bool) – Hide the file name of the sphere input file

• dry (bool) – Perform a dry run. Important parameter values are shown by the sphere
program, and it exits afterwards.

• valgrind (bool) – Run the program with valgrind in order to check memory leaks
in the host code. This causes a significant increase in computational time.

• cudamemcheck (bool) – Run the program with cudamemcheck in order to check for
device memory leaks and errors. This causes a significant increase in computational time.

• device (int) – Specify the GPU device to execute the program on. If not specified,
sphere will use the device with the most CUDA cores. To see a list of devices, run
nvidia-smi in the system shell.

scaleSize(factor)
Scale the positions, linear velocities, forces, torques and radii of all particles and mobile walls.

30 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

Parameters factor (float) – Spatial scaling factor]0;inf[

setBeta(beta)
Beta is a fluid solver parameter, used in velocity prediction and pressure iteration 1.0: Use old pressures
for fluid velocity prediction (see Langtangen et al. 2002) 0.0: Do not use old pressures for fluid velocity
prediction (Chorin’s original projection method, see Chorin (1968) and “Projection method (fluid dynam-
ics)” page on Wikipedia. The best results precision and performance-wise are obtained by using a beta of
0 and a low tolerance criteria value.

The default and recommended value is 0.0.

Other solver parameter setting functions: setGamma(), setTheta(), setTolerance(),
setDEMstepsPerCFDstep() and setMaxIterations()

setDEMstepsPerCFDstep(ndem)
A fluid solver parameter, the value of the maxiter parameter denotes the number of DEM time steps to be
performed per CFD time step.

The default value is 1.

Parameters ndem (int) – The DEM/CFD time step ratio

Other solver parameter setting functions: setGamma(), setTheta(), setBeta(),
setTolerance() and setMaxIterations().

setDampingNormal(gamma, over_damping=False)
Set the dampening coefficient (gamma) in the normal direction of the particle-particle contact model. The
function will print the fraction between the chosen damping and the critical damping value.

Parameters

• gamma (float) – The viscous damping constant [N/(m/s)]

• over_damping (boolean) – Accept overdampening

See also: setDampingTangential(gamma)()

setDampingTangential(gamma, over_damping=False)
Set the dampening coefficient (gamma) in the tangential direction of the particle-particle contact model.
The function will print the fraction between the chosen damping and the critical damping value.

Parameters

• gamma (float) – The viscous damping constant [N/(m/s)]

• over_damping (boolean) – Accept overdampening

See also: setDampingNormal(gamma)()

setDynamicFriction(mu_d)
Set the dynamic friction coefficient for particle-particle interactions (self.mu_d). This value describes the
resistance to a shearing motion while it is happening (contact tangential velocity larger than 0). Strain
softening can be introduced by having a smaller dynamic frictional coefficient than the static fricion coef-
ficient. Usually this value is identical to the static friction coefficient.

Parameters mu_d (float) – Value of the dynamic friction coefficient, in [0;inf[. Usually
between 0 and 1.

See also: setStaticFriction(mu_s)()

setFluidBottomFixedFlux(specific_flux)
Define a constant fluid flux normal to the boundary.

The default behavior for the boundary is fixed value (Dirichlet), see
setFluidBottomFixedPressure().

1.4. Python API 31

sphere Documentation, Release 2.15-beta

Parameters specific_flux – Specific flux values across boundary (positive values up-
wards), [m/s]

setFluidBottomFixedPressure()
Set the lower boundary of the fluid domain to follow the fixed pressure value (Dirichlet) boundary condi-
tion.

This is the default behavior for the boundary. See also setFluidBottomNoFlow()

setFluidBottomNoFlow()
Set the lower boundary of the fluid domain to follow the no-flow (Neumann) boundary condition with free
slip parallel to the boundary.

The default behavior for the boundary is fixed value (Dirichlet), see
setFluidBottomFixedPressure().

setFluidBottomNoFlowNoSlip()
Set the lower boundary of the fluid domain to follow the no-flow (Neumann) boundary condition with no
slip parallel to the boundary.

The default behavior for the boundary is fixed value (Dirichlet), see
setFluidBottomFixedPressure().

setFluidCompressibility(beta_f)
Set the fluid adiabatic compressibility [1/Pa]. This value is equal to 1/K where K is the bulk modulus [Pa].
The value for water is 5.1e-10 for water at 0 degrees Celcius. This parameter is used for the Darcy solver
exclusively.

Parameters beta_f (float) – The fluid compressibility [1/Pa]

See also: setFluidDensity() and setFluidViscosity()

setFluidDensity(rho_f)
Set the fluid density [kg/(m*m*m)]. The value for water is 1000. This parameter is used for the Navier-
Stokes fluid solver exclusively.

Parameters rho_f (float) – The fluid density [kg/(m*m*m)]

See also: setFluidViscosity() and setFluidCompressibility()

setFluidPressureModulation(A, f, phi=0.0, plot=False)
Set the parameters for the sine wave modulating the fluid pressures at the top boundary. Note that a
cos-wave is obtained with phi=pi/2.

Parameters

• A (float) – Fluctuation amplitude [Pa]

• f (float) – Fluctuation frequency [Hz]

• phi (float) – Fluctuation phase shift (default=0.0) [rad]

• plot (bool) – Show a plot of the resulting modulation

See also: setTopWallNormalStressModulation() and disableFluidPressureModulation()

setFluidTopFixedFlux(specific_flux)
Define a constant fluid flux normal to the boundary.

The default behavior for the boundary is fixed value (Dirichlet), see
setFluidBottomFixedPressure().

Parameters specific_flux – Specific flux values across boundary (positive values up-
wards), [m/s]

32 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

setFluidTopFixedPressure()
Set the upper boundary of the fluid domain to follow the fixed pressure value (Dirichlet) boundary condi-
tion.

This is the default behavior for the boundary. See also setFluidTopNoFlow()

setFluidTopNoFlow()
Set the upper boundary of the fluid domain to follow the no-flow (Neumann) boundary condition with free
slip parallel to the boundary.

The default behavior for the boundary is fixed value (Dirichlet), see
setFluidTopFixedPressure().

setFluidTopNoFlowNoSlip()
Set the upper boundary of the fluid domain to follow the no-flow (Neumann) boundary condition with no
slip parallel to the boundary.

The default behavior for the boundary is fixed value (Dirichlet), see
setFluidTopFixedPressure().

setFluidViscosity(mu)
Set the fluid dynamic viscosity [Pa*s]. The value for water is 1.797e-3 at 0 degrees Celcius. This parameter
is used for both the Darcy and Navier-Stokes fluid solver.

Parameters mu (float) – The fluid dynamic viscosity [Pa*s]

See also: setFluidDensity() and setFluidCompressibility()

setFluidXFixedPressure()
Set the X boundaries of the fluid domain to follow the fixed pressure value (Dirichlet) boundary condition.

This is not the default behavior for the boundary. See also setFluidXFixedPressure(),
setFluidXNoFlow(), and setFluidXPeriodic() (default)

setFluidXNoFlow()
Set the X boundaries of the fluid domain to follow the no-flow (Neumann) boundary condition.

This is not the default behavior for the boundary. See also setFluidXFixedPressure(),
setFluidXNoFlow(), and setFluidXPeriodic() (default)

setFluidXPeriodic()
Set the X boundaries of the fluid domain to follow the periodic (cyclic) boundary condition.

This is the default behavior for the boundary. See also setFluidXFixedPressure() and
setFluidXNoFlow()

setFluidYFixedPressure()
Set the Y boundaries of the fluid domain to follow the fixed pressure value (Dirichlet) boundary condition.

This is not the default behavior for the boundary. See also setFluidYNoFlow() and
setFluidYPeriodic() (default)

setFluidYNoFlow()
Set the Y boundaries of the fluid domain to follow the no-flow (Neumann) boundary condition.

This is not the default behavior for the boundary. See also setFluidYFixedPressure() and
setFluidYPeriodic() (default)

setFluidYPeriodic()
Set the Y boundaries of the fluid domain to follow the periodic (cyclic) boundary condition.

This is the default behavior for the boundary. See also setFluidYFixedPressure() and
setFluidYNoFlow()

1.4. Python API 33

sphere Documentation, Release 2.15-beta

setGamma(gamma)
Gamma is a fluid solver parameter, used for smoothing the pressure values. The epsilon (pressure) values
are smoothed by including the average epsilon value of the six closest (face) neighbor cells. This parameter
should be in the range [0.0;1.0[. The higher the value, the more averaging is introduced. A value of 0.0
disables all averaging.

The default and recommended value is 0.0.

Parameters theta (float) – The smoothing parameter value

Other solver parameter setting functions: setTheta(), setBeta(), setTolerance(),
setDEMstepsPerCFDstep() and setMaxIterations()

setMaxIterations(maxiter)
A fluid solver parameter, the value of the maxiter parameter denotes the maximal allowed number of fluid
solver iterations before ending the fluid solver loop prematurely. The residual values are at that point not
fulfilling the tolerance criteria. The parameter is included to avoid infinite hangs.

The default and recommended value is 1e4.

Parameters maxiter (int) – The maximum number of Jacobi iterations in the fluid solver

Other solver parameter setting functions: setGamma(), setTheta(), setBeta(),
setDEMstepsPerCFDstep() and setTolerance()

setPermeabilityGrainSize(verbose=True)
Set the permeability prefactor based on the mean grain size (Damsgaard et al., 2015, eq. 10).

Parameters verbose (bool) – Print information about the realistic permeabilities hydraulic
conductivities to expect with the chosen permeability prefactor.

setPermeabilityPrefactor(k_c, verbose=True)
Set the permeability prefactor from Goren et al 2011, eq. 24. The function will print the limits of perme-
abilities to be simulated. This parameter is only used in the Darcy solver.

Parameters

• k_c (float) – Permeability prefactor value [m*m]

• verbose (bool) – Print information about the realistic permeabilities and hydraulic
conductivities to expect with the chosen permeability prefactor.

setStaticFriction(mu_s)
Set the static friction coefficient for particle-particle interactions (self.mu_s). This value describes the
resistance to a shearing motion while it is not happenind (contact tangential velocity zero).

Parameters mu_s (float) – Value of the static friction coefficient, in [0;inf[. Usually between
0 and 1.

See also: setDynamicFriction(mu_d)()

setStiffnessNormal(k_n)
Set the elastic stiffness (k_n) in the normal direction of the contact.

Parameters k_n (float) – The elastic stiffness coefficient [N/m]

setStiffnessTangential(k_t)
Set the elastic stiffness (k_t) in the tangential direction of the contact.

Parameters k_t (float) – The elastic stiffness coefficient [N/m]

setTheta(theta)
Theta is a fluid solver under-relaxation parameter, used in solution of Poisson equation. The value should
be within the range]0.0;1.0]. At a value of 1.0, the new estimate of epsilon values is used exclusively. At

34 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

lower values, a linear interpolation between new and old values is used. The solution typically converges
faster with a value of 1.0, but instabilities may be avoided with lower values.

The default and recommended value is 1.0.

Parameters theta (float) – The under-relaxation parameter value

Other solver parameter setting functions: setGamma(), setBeta(), setTolerance(),
setDEMstepsPerCFDstep() and setMaxIterations()

setTolerance(tolerance)
A fluid solver parameter, the value of the tolerance parameter denotes the required value of the maximum
normalized residual for the fluid solver.

The default and recommended value is 1.0e-3.

Parameters tolerance (float) – The tolerance criteria for the maximal normalized residual

Other solver parameter setting functions: setGamma(), setTheta(), setBeta(),
setDEMstepsPerCFDstep() and setMaxIterations()

setTopWallNormalStressModulation(A, f, plot=False)
Set the parameters for the sine wave modulating the normal stress at the top wall. Note that a cos-wave is
obtained with phi=pi/2.

Parameters

• A (float) – Fluctuation amplitude [Pa]

• f (float) – Fluctuation frequency [Hz]

• plot (bool) – Show a plot of the resulting modulation

See also: setFluidPressureModulation() and disableTopWallNormalStressModulation()

setYoungsModulus(E)
Set the elastic Young’s modulus (E) for the contact model. This parameter is used over normal stiffness
(k_n) and tangential stiffness (k_t) when its value is greater than zero. Using this parameter produces
size-invariant behavior.

Example values are ~70e9 Pa for quartz, http://www.engineeringtoolbox.com/young-modulus-d_417.html

Parameters E (float) – The elastic modulus [Pa]

shear(shear_strain_rate=1.0, shear_stress=False)
Setup shear experiment either by a constant shear rate or a constant shear stress. The shear strain rate is the
shear velocity divided by the initial height per second. The shear movement is along the positive x axis.
The function zeroes the tangential wall viscosity (gamma_wt) and the wall friction coefficients (mu_ws,
mu_wn).

Parameters

• shear_strain_rate (float) – The shear strain rate [-] to use if shear_stress isn’t
False.

• shear_stress (float or bool) – The shear stress value to use [Pa].

shearDisplacement()
Calculates and returns the current shear displacement. The displacement is found by determining the total
x-axis displacement of the upper, fixed particles.

Returns The total shear displacement [m]

Return type float

See also: shearStrain() and shearVelocity()

1.4. Python API 35

http://www.engineeringtoolbox.com/young-modulus-d_417.html

sphere Documentation, Release 2.15-beta

shearStrain()
Calculates and returns the current shear strain (gamma) value of the experiment. The shear strain is found
by determining the total x-axis displacement of the upper, fixed particles.

Returns The total shear strain [-]

Return type float

See also: shearStrainRate() and shearVel()

shearStrainRate()
Calculates the shear strain rate (dot(gamma)) value of the experiment.

Returns The value of dot(gamma)

Return type float

See also: shearStrain() and shearVel()

shearStress(type=’effective’)
Calculates the sum of shear stress values measured on any moving particles with a finite and fixed velocity.

Parameters type (str) – Find the ‘defined’ or ‘effective’ (default) shear stress

Returns The shear stress in Pa

Return type numpy.array

shearVel()
Alias of shearVelocity()

shearVelocity()
Calculates and returns the current shear velocity. The displacement is found by determining the total x-axis
velocity of the upper, fixed particles.

Returns The shear velocity [m/s]

Return type float

See also: shearStrainRate() and shearDisplacement()

sheardisp(graphics_format=’pdf’, zslices=32)
Plot the particle x-axis displacement against the original vertical particle position. The plot is saved in the
current directory with the file name ‘<simulation id>-sheardisp.<graphics_format>’.

Parameters graphics_format (str) – Save the plot in this format

show(coloring=array([], dtype=float64), resolution=6)
Show a rendering of all particles in a window.

Parameters

• coloring (numpy.array) – Color the particles from red to white to blue according
to the values in this array.

• resolution (int) – The resolution of the rendered spheres. Larger values increase the
performance requirements.

smallestMass()
Returns the mass of the leightest particle.

Parameters idx (int) – Particle index

Returns The mass of the particle [kg]

Return type float

36 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

staticGrid()
Set the height of the fluid grid to be constant as set in self.L[2].

See also adaptiveGrid()

status()
Returns the current simulation status by using the simulation id (sid) as an identifier.

Returns The number of the last output file written

Return type int

surfaceArea(idx)
Returns the surface area of a particle.

Parameters idx (int) – Particle index

Returns The surface area of the particle [m^2]

Return type float

thinsection_x1x3(x2=’center’, graphics_format=’png’, cbmax=None, arrowscale=0.01, velar-
rowscale=1.0, slipscale=1.0, verbose=False)

Produce a 2D image of particles on a x1,x3 plane, intersecting the second axis at x2. Output is saved as
‘<sid>-ts-x1x3.txt’ in the current folder.

An upper limit to the pressure color bar range can be set by the cbmax parameter.

The data can be plotted in gnuplot with: gnuplot> set size ratio -1 gnuplot> set palette defined (0
“blue”, 0.5 “gray”, 1 “red”) gnuplot> plot ‘<sid>-ts-x1x3.txt’ with circles palette fs transparent solid
0.4 noborder

This function also saves a plot of the inter-particle slip angles.

Parameters

• x2 (foat) – The position along the second axis of the intersecting plane

• graphics_format (str) – Save the slip angle plot in this format

• cbmax (float) – The maximal value of the pressure color bar range

• arrowscale (float) – Scale the rotational arrows by this value

• velarrowscale (float) – Scale the translational arrows by this value

• slipscale (float) – Scale the slip arrows by this value

• verbose (bool) – Show function output during calculations

torqueScript(email=’adc@geo.au.dk’, email_alerts=’ae’, walltime=’24:00:00’, queue=’qfermi’,
cudapath=’/com/cuda/4.0.17/cuda’, spheredir=’/home/adc/code/sphere’,
use_workdir=False, workdir=’/scratch’)

Creates a job script for the Torque queue manager for the simulation object.

Parameters

• email (str) – The e-mail address that Torque messages should be sent to

• email_alerts (str) – The type of Torque messages to send to the e-mail address.
The character ‘b’ causes a mail to be sent when the execution begins. The character ‘e’
causes a mail to be sent when the execution ends normally. The character ‘a’ causes a mail
to be sent if the execution ends abnormally. The characters can be written in any order.

• walltime (str) – The maximal allowed time for the job, in the format ‘HH:MM:SS’.

• queue (str) – The Torque queue to schedule the job for

1.4. Python API 37

sphere Documentation, Release 2.15-beta

• cudapath (str) – The path of the CUDA library on the cluster compute nodes

• spheredir (str) – The path to the root directory of sphere on the cluster

• use_workdir (bool) – Use a different working directory than the sphere folder

• workdir (str) – The working directory during the calculations, if use_workdir=True

totalFrictionalEnergy()
Returns the total frictional dissipated energy for all particles.

Returns The total frictional energy lost of all particles [J]

Return type float

totalKineticEnergy()
Returns the total linear kinetic energy for all particles.

Returns The kinetic energy of all particles [J]

totalMass()
Returns the total mass of all particles.

Returns The total mass in [kg]

totalMomentum()
Returns the sum of particle momentums.

Returns The sum of particle momentums (m*v) [N*s]

Return type numpy.array

totalRotationalEnergy()
Returns the total rotational kinetic energy for all particles.

Returns The rotational energy of all particles [J]

totalViscousEnergy()
Returns the total viscous dissipated energy for all particles.

Returns The normal viscous energy lost by all particles [J]

Return type float

triaxial(wvel=-0.001, normal_stress=10000.0)
Setup triaxial experiment. The upper wall is moved at a fixed velocity in m/s, default values is -0.001 m/s
(i.e. downwards). The side walls are exerting a defined normal stress.

Parameters

• wvel (float) – Upper wall velocity. Negative values mean that the wall moves down-
wards.

• normal_stress (float) – The normal stress to apply from the upper wall.

uniaxialStrainRate(wvel=-0.001)
Setup consolidation experiment. Specify the upper wall velocity in m/s, default value is -0.001 m/s (i.e.
downwards).

Parameters wvel (float) – Upper wall velocity. Negative values mean that the wall moves
downwards.

video(out_folder=’./’, video_format=’mp4’, graphics_folder=’../img_out/’, graphics_format=’png’,
fps=25, qscale=1, bitrate=1800, verbose=False)

Uses ffmpeg to combine images to animation. All images should be rendered beforehand using
render().

38 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

Parameters

• out_folder (str) – The output folder for the video file

• video_format (str) – The format of the output video

• graphics_folder (str) – The folder containing the rendered images

• graphics_format (str) – The format of the rendered images

• fps (int) – The number of frames per second to use in the video

• qscale (float) – The output video quality, in]0;1]

• bitrate (int) – The bitrate to use in the output video

• verbose (bool) – Show ffmpeg output

viscousEnergy(idx)
Returns the viscous dissipated energy for a particle.

Parameters idx (int) – Particle index

Returns The energy lost by the particle by viscous dissipation [J]

Return type float

visualize(method=’energy’, savefig=True, outformat=’png’, figsize=False, pickle=False,
xlim=False, firststep=0, f_min=None, f_max=None, cmap=None, smoothing=0, smooth-
ing_window=’hanning’)

Visualize output from the simulation, where the temporal progress is of interest. The output will be saved
in the current folder with a name combining the simulation id of the simulation, and the visualization
method.

Parameters

• method (str) – The type of plot to render. Possible values are ‘energy’, ‘walls’,
‘triaxial’, ‘inertia’, ‘mean-fluid-pressure’, ‘fluid-pressure’, ‘shear’, ‘shear-displacement’,
‘porosity’, ‘rate-dependence’, ‘contacts’

• savefig (bool) – Save the image instead of showing it on screen

• outformat – The output format of the plot data. This can be an image format, or in text
(‘txt’).

• figsize (array) – Specify output figure size in inches

• pickle (bool) – Save all figure content as a Python pickle file. It can be opened later
using fig=pickle.load(open(‘file.pickle’,’rb’)).

• xlim (array) – Set custom limits to the x axis. If not specified, the x range will corre-
spond to the entire data interval.

• firststep (int) – The first output file step to read (default: 0)

• cmap (matplotlib.colors.LinearSegmentedColormap) – Choose custom
color map, e.g. cmap=matplotlib.cm.get_cmap(‘afmhot’)

• smoothing (int) – Apply smoothing across a number of output files to the
method=’shear’ plot. A value of less than 3 means that no smoothing occurs.

• smoothing_window (str) – Type of smoothing to use when smoothing >= 3. Valid
values are ‘flat’, ‘hanning’ (default), ‘hamming’, ‘bartlett’, and ‘blackman’.

voidRatio()
Calculates the current void ratio

1.4. Python API 39

sphere Documentation, Release 2.15-beta

Returns The void ratio (pore volume relative to solid volume)

Return type float

volume(idx)
Returns the volume of a particle.

Parameters idx (int) – Particle index

Returns The volume of the particle [m^3]

Return type float

wall0iz()
Returns the cell index of wall 0 along z.

Returns z cell index

Return type int

wet()
Set the simulation to be wet (total fluid saturation).

See also dry()

writeFluidVTK(folder=’../output/’, cell_centered=True, verbose=True)
Writes a VTK file for the fluid grid to the ../output/ folder by default. The file name will be in the
format fluid-<self.sid>.vti. The vti files can be used for visualizing the fluid in ParaView.

The scalars (pressure, porosity, porosity change) and the velocity vectors are either placed in a grid where
the grid corners correspond to the computational grid center (cell_centered=False). This results in a grid
that doesn’t appears to span the simulation domain, and values are smoothly interpolated on the cell faces.
Alternatively, the visualization grid is equal to the computational grid, and cells face colors are not inter-
polated (cell_centered=True, default behavior).

The fluid grid is visualized by opening the vti files, and pressing “Apply” to import all fluid field proper-
ties. To visualize the scalar fields, such as the pressure, the porosity, the porosity change or the velocity
magnitude, choose “Surface” or “Surface With Edges” as the “Representation”. Choose the desired prop-
erty as the “Coloring” field. It may be desirable to show the color bar by pressing the “Show” button,
and “Rescale” to fit the color range limits to the current file. The coordinate system can be displayed
by checking the “Show Axis” field. All adjustments by default require the “Apply” button to be pressed
before regenerating the view.

The fluid vector fields (e.g. the fluid velocity) can be visualizing by e.g. arrows. To do this, select the fluid
data in the “Pipeline Browser”. Press “Glyph” from the “Common” toolbar, or go to the “Filters” mennu,
and press “Glyph” from the “Common” list. Make sure that “Arrow” is selected as the “Glyph type”, and
“Velocity” as the “Vectors” value. Adjust the “Maximum Number of Points” to be at least as big as the
number of fluid cells in the grid. Press “Apply” to visualize the arrows.

To visualize the cell-centered data with smooth interpolation, and in order to visualize fluid vector fields,
the cell-centered mesh is selected in the “Pipeline Browser”, and is filtered using “Filters” -> “Alphabeti-
cal” -> “Cell Data to Point Data”.

If several data files are generated for the same simulation (e.g. using the writeVTKall() function), it
is able to step the visualization through time by using the ParaView controls.

Parameters

• folder (str) – The folder where to place the output binary file (default (de-
fault=’../output/’)

• cell_centered (bool) – put scalars and vectors at cell centers (True) or cell corners
(False), (default=True)

40 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

• verbose (bool) – Show diagnostic information (default=True)

writeVTK(folder=’../output/’, verbose=True)
Writes a VTK file with particle information to the ../output/ folder by default. The file name will be
in the format <self.sid>.vtu. The vtu files can be used to visualize the particles in ParaView.

After opening the vtu files, the particle fields will show up in the “Properties” list. Press “Apply” to
import all fields into the ParaView session. The particles are visualized by selecting the imported data
in the “Pipeline Browser”. Afterwards, click the “Glyph” button in the “Common” toolbar, or go to the
“Filters” menu, and press “Glyph” from the “Common” list. Choose “Sphere” as the “Glyph Type”,
choose “scalar” as the “Scale Mode”. Check the “Edit” checkbox, and set the “Set Scale Factor” to 1.0.
The field “Maximum Number of Points” may be increased if the number of particles exceed the default
value. Finally press “Apply”, and the particles will appear in the main window.

The sphere resolution may be adjusted (“Theta resolution”, “Phi resolution”) to increase the quality and
the computational requirements of the rendering. All adjustments by default require the “Apply” button to
be pressed before regenerating the view.

If several vtu files are generated for the same simulation (e.g. using the writeVTKall() function), it is
able to step the visualization through time by using the ParaView controls.

Parameters

• folder (str) – The folder where to place the output binary file (default (de-
fault=’../output/’)

• verbose (bool) – Show diagnostic information (default=True)

writeVTKall(cell_centered=True, verbose=True, forces=False)
Writes a VTK file for each simulation output file with particle information and the fluid grid to
the ../output/ folder by default. The file name will be in the format <self.sid>.vtu and
fluid-<self.sid>.vti. The vtu files can be used to visualize the particles, and the vti files for
visualizing the fluid in ParaView.

After opening the vtu files, the particle fields will show up in the “Properties” list. Press “Apply” to import
all fields into the ParaView session. The particles are visualized by selecting the imported data in the
“Pipeline Browser”. Afterwards, click the “Glyph” button in the “Common” toolbar, or go to the “Filters”
menu, and press “Glyph” from the “Common” list. Choose “Sphere” as the “Glyph Type”, set “Radius”
to 1.0, choose “scalar” as the “Scale Mode”. Check the “Edit” checkbox, and set the “Set Scale Factor”
to 1.0. The field “Maximum Number of Points” may be increased if the number of particles exceed the
default value. Finally press “Apply”, and the particles will appear in the main window.

The sphere resolution may be adjusted (“Theta resolution”, “Phi resolution”) to increase the quality and
the computational requirements of the rendering.

The fluid grid is visualized by opening the vti files, and pressing “Apply” to import all fluid field proper-
ties. To visualize the scalar fields, such as the pressure, the porosity, the porosity change or the velocity
magnitude, choose “Surface” or “Surface With Edges” as the “Representation”. Choose the desired prop-
erty as the “Coloring” field. It may be desirable to show the color bar by pressing the “Show” button,
and “Rescale” to fit the color range limits to the current file. The coordinate system can be displayed
by checking the “Show Axis” field. All adjustments by default require the “Apply” button to be pressed
before regenerating the view.

The fluid vector fields (e.g. the fluid velocity) can be visualizing by e.g. arrows. To do this, select the fluid
data in the “Pipeline Browser”. Press “Glyph” from the “Common” toolbar, or go to the “Filters” mennu,
and press “Glyph” from the “Common” list. Make sure that “Arrow” is selected as the “Glyph type”, and
“Velocity” as the “Vectors” value. Adjust the “Maximum Number of Points” to be at least as big as the
number of fluid cells in the grid. Press “Apply” to visualize the arrows.

1.4. Python API 41

sphere Documentation, Release 2.15-beta

If several data files are generated for the same simulation (e.g. using the writeVTKall() function), it
is able to step the visualization through time by using the ParaView controls.

Parameters

• verbose (bool) – Show diagnostic information (default=True)

• cell_centered (bool) – Write fluid values to cell centered positions (default=true)

• forces (bool) – Write contact force files (slow) (default=False)

writeVTKforces(folder=’../output/’, verbose=True)
Writes a VTK file with particle-interaction information to the ../output/ folder by default. The file
name will be in the format <self.sid>.vtp. The vtp files can be used to visualize the particle interac-
tions in ParaView. First use the “Cell Data to Point Data” filter, and afterwards show the contact network
with the “Tube” filter.

Parameters

• folder (str) – The folder where to place the output file (default (default=’../output/’)

• verbose (bool) – Show diagnostic information (default=True)

writebin(folder=’../input/’, verbose=True)
Writes a sphere binary file to the ../input/ folder by default. The file name will be in the format
<self.sid>.bin.

See also readbin().

Parameters

• folder (str) – The folder where to place the output binary file

• verbose (bool) – Show diagnostic information (default=True)

zeroKinematics()
Zero all kinematic parameters of the particles. This function is useful when output from one simulation is
reused in another simulation.

sphere.status(project)
Check the status.dat file for the target project, and return the last output file number.

Parameters project (str) – The simulation id of the target project

Returns The last output file written in the simulation calculations

Return type int

sphere.thinsectionVideo(project, out_folder=’./’, video_format=’mp4’, fps=25, qscale=1, bi-
trate=1800, verbose=False)

Uses ffmpeg to combine thin section images to an animation. This function will implicity render the thin section
images beforehand.

Parameters

• project (str) – The simulation id of the project to render

• out_folder (str) – The output folder for the video file

• video_format (str) – The format of the output video

• fps (int) – The number of frames per second to use in the video

• qscale (float) – The output video quality, in]0;1]

• bitrate (int) – The bitrate to use in the output video

• verbose (bool) – Show ffmpeg output

42 Chapter 1. Contents

sphere Documentation, Release 2.15-beta

sphere.torqueScriptParallel3(obj1, obj2, obj3, email=’adc@geo.au.dk’, email_alerts=’ae’,
walltime=’24:00:00’, queue=’qfermi’, cudap-
ath=’/com/cuda/4.0.17/cuda’, spheredir=’/home/adc/code/sphere’,
use_workdir=False, workdir=’/scratch’)

Create job script for the Torque queue manager for three binaries, executed in parallel, ideally on three GPUs.

Parameters

• email (str) – The e-mail address that Torque messages should be sent to

• email_alerts (str) – The type of Torque messages to send to the e-mail address. The
character ‘b’ causes a mail to be sent when the execution begins. The character ‘e’ causes a
mail to be sent when the execution ends normally. The character ‘a’ causes a mail to be sent
if the execution ends abnormally. The characters can be written in any order.

• walltime (str) – The maximal allowed time for the job, in the format ‘HH:MM:SS’.

• queue (str) – The Torque queue to schedule the job for

• cudapath (str) – The path of the CUDA library on the cluster compute nodes

• spheredir (str) – The path to the root directory of sphere on the cluster

• use_workdir (bool) – Use a different working directory than the sphere folder

• workdir (str) – The working directory during the calculations, if use_workdir=True

Returns The filename of the script

Return type str

See also torqueScript()

sphere.video(project, out_folder=’./’, video_format=’mp4’, graphics_folder=’../img_out/’, graph-
ics_format=’png’, fps=25, verbose=True)

Uses ffmpeg to combine images to animation. All images should be rendered beforehand using render().

Parameters

• project (str) – The simulation id of the project to render

• out_folder (str) – The output folder for the video file

• video_format (str) – The format of the output video

• graphics_folder (str) – The folder containing the rendered images

• graphics_format (str) – The format of the rendered images

• fps (int) – The number of frames per second to use in the video

• qscale (float) – The output video quality, in]0;1]

• bitrate (int) – The bitrate to use in the output video

• verbose (bool) – Show ffmpeg output

1.5 sphere internals

The sphere executable has the following options:

1.5. sphere internals 43

sphere Documentation, Release 2.15-beta

$../../sphere --help
../../sphere: particle dynamics simulator
Usage: ../../sphere [OPTION[S]]... [FILE1 ...]
Options:
-h, --help print help
-V, --version print version information and exit
-q, --quiet suppress status messages to stdout
-d <device> execute on device with specified id
-n, --dry show key experiment parameters and quit
-f, --fluid simulate fluid between particles
-r, --render render input files to images instead of

simulating the temporal evolution
-dc, --dont-check don't check values before running

Raytracer (-r) specific options:
-m <method> <maxval> [-l <lower cutoff val>], or
--method <method> <maxval> [-l <lower cutoff val>]

color visualization method, possible values:
normal, pres, vel, angvel, xdisp, angpos
'normal' is the default mode
if -l is appended, don't render particles with value below

-c, --contacts Print a list of particle-particle contacts

The most common way to invoke sphere is however via the Python API (e.g. sphere.run(), sphere.
render(), etc.).

subsection{The sphere algorithm} label{subsec:spherealgo} The sphere-binary is launched from the system terminal
by passing the simulation ID as an input parameter; texttt{./sphere_<architecture> <simulation_ID>}. The sequence
of events in the program is the following: #. System check, including search for NVIDIA CUDA compatible devices
(texttt{main.cpp}).

1. Initial data import from binary input file (texttt{main.cpp}).

2. Allocation of memory for all host variables (particles, grid, walls, etc.) (texttt{main.cpp}).

3. Continued import from binary input file (texttt{main.cpp}).

4. Control handed to GPU-specific function texttt{gpuMain(ldots)} (texttt{device.cu}).

5. Memory allocation of device memory (texttt{device.cu}).

6. Transfer of data from host to device variables (texttt{device.cu}).

7. Initialization of Thrustfootnote{url{https://code.google.com/p/thrust/}} radix sort configuration
(texttt{device.cu}).

8. Calculation of GPU workload configuration (thread and block layout) (texttt{device.cu}).

9. Status and data written to verb”<simulation_ID>.status.dat” and verb”<simulation_ID>.output0.bin”, both lo-
cated in texttt{output/} folder (texttt{device.cu}).

10. Main loop (while texttt{time.current <= time.total}) (functions called in texttt{device.cu}, function definitions
in seperate files). Each kernel call is wrapped in profiling- and error exception handling functions:

1. label{loopstart}CUDA thread synchronization point.

2. texttt{calcParticleCellID<<<,>>>(ldots)}: Particle-grid hash value calculation (texttt{sorting.cuh}).

3. CUDA thread synchronization point.

4. texttt{thrust::sort_by_key(ldots)}: Thrust radix sort of particle-grid hash array (texttt{device.cu}).

5. texttt{cudaMemset(ldots)}: Writing zero value (texttt{0xffffffff}) to empty grid cells (texttt{device.cu}).

44 Chapter 1. Contents

https://code.google.com/p/thrust/

sphere Documentation, Release 2.15-beta

6. texttt{reorderArrays<<<,>>>(ldots)}: Reordering of particle arrays, based on sorted particle-grid-hash values
(texttt{sorting.cuh}).

7. CUDA thread synchronization point.

8. Optional: texttt{topology<<<,>>>(ldots)}: If particle contact history is required by the contact model, par-
ticle contacts are identified, and stored per particle. Previous, now non-existant contacts are discarded
(texttt{contactsearch.cuh}).

9. CUDA thread synchronization point.

10. texttt{interact<<<,>>>(ldots)}: For each particle: Search of contacts in neighbor cells, processing of optional
collisions and updating of resulting forces and torques. Values are written to read/write device memory arrays
(texttt{contactsearch.cuh}).

11. CUDA thread synchronization point.

12. texttt{integrate<<<,>>>(ldots)}: Updating of spatial degrees of freedom by a second-order Taylor series expan-
sion integration (texttt{integration.cuh}).

13. CUDA thread synchronization point.

14. texttt{summation<<<,>>>(ldots)}: Particle contributions to the net force on the walls are summated
(texttt{integration.cuh}).

15. CUDA thread synchronization point.

16. texttt{integrateWalls<<<,>>>(ldots)}: Updating of spatial degrees of freedom of walls (texttt{integration.cuh}).

17. Update of timers and loop-related counters (e.g. texttt{time.current}), (texttt{device.cu}).

18. If file output interval is reached:

item Optional write of data to output binary (verb”<simulation_ID>.output#..bin”),
(texttt{file_io.cpp}). item Update of verb”<simulation_ID>.status#..bin”
(texttt{device.cu}).

item Return to point ref{loopstart}, unless texttt{time.current >= time.total}, in which case the pro-
gram continues to point ref{loopend}.

1. label{loopend}Liberation of device memory (texttt{device.cu}).

2. Control returned to texttt{main(ldots)}, liberation of host memory (texttt{main.cpp}).

3. End of program, return status equal to zero (0) if no problems where encountered.

1.5.1 Numerical algorithm

The sphere-binary is launched from the system terminal by passing the simulation ID as an input parameter;
texttt{./sphere_<architecture> <simulation_ID>}. The sequence of events in the program is the following:

1. System check, including search for NVIDIA CUDA compatible devices (texttt{main.cpp}).

2. Initial data import from binary input file (texttt{main.cpp}).

3. Allocation of memory for all host variables (particles, grid, walls, etc.) (texttt{main.cpp}).

4. Continued import from binary input file (texttt{main.cpp}).

5. Control handed to GPU-specific function texttt{gpuMain(ldots)} (texttt{device.cu}).

6. Memory allocation of device memory (texttt{device.cu}).

7. Transfer of data from host to device variables (texttt{device.cu}).

1.5. sphere internals 45

sphere Documentation, Release 2.15-beta

8. Initialization of Thrustfootnote{url{https://code.google.com/p/thrust/}} radix sort configuration
(texttt{device.cu}).

9. Calculation of GPU workload configuration (thread and block layout) (texttt{device.cu}).

10. Status and data written to verb”<simulation_ID>.status.dat” and verb”<simulation_ID>.output0.bin”, both lo-
cated in texttt{output/} folder (texttt{device.cu}).

11. Main loop (while texttt{time.current <= time.total}) (functions called in texttt{device.cu}, function definitions
in seperate files). Each kernel call is wrapped in profiling- and error exception handling functions:

1. label{loopstart}CUDA thread synchronization point.

2. texttt{calcParticleCellID<<<,>>>(ldots)}: Particle-grid hash value calculation (texttt{sorting.cuh}).

3. CUDA thread synchronization point.

4. texttt{thrust::sort_by_key(ldots)}: Thrust radix sort of particle-grid hash array (texttt{device.cu}).

5. texttt{cudaMemset(ldots)}: Writing zero value (texttt{0xffffffff}) to empty grid cells (texttt{device.cu}).

6. texttt{reorderArrays<<<,>>>(ldots)}: Reordering of particle arrays, based on sorted particle-grid-hash values
(texttt{sorting.cuh}).

7. CUDA thread synchronization point.

8. Optional: texttt{topology<<<,>>>(ldots)}: If particle contact history is required by the contact model, par-
ticle contacts are identified, and stored per particle. Previous, now non-existant contacts are discarded
(texttt{contactsearch.cuh}).

9. CUDA thread synchronization point.

10. texttt{interact<<<,>>>(ldots)}: For each particle: Search of contacts in neighbor cells, processing of optional
collisions and updating of resulting forces and torques. Values are written to read/write device memory arrays
(texttt{contactsearch.cuh}).

11. CUDA thread synchronization point.

12. texttt{integrate<<<,>>>(ldots)}: Updating of spatial degrees of freedom by a second-order Taylor series expan-
sion integration (texttt{integration.cuh}).

13. CUDA thread synchronization point.

14. texttt{summation<<<,>>>(ldots)}: Particle contributions to the net force on the walls are summated
(texttt{integration.cuh}).

15. CUDA thread synchronization point.

16. texttt{integrateWalls<<<,>>>(ldots)}: Updating of spatial degrees of freedom of walls (texttt{integration.cuh}).

17. Update of timers and loop-related counters (e.g. texttt{time.current}), (texttt{device.cu}).

18. If file output interval is reached:

• Optional write of data to output binary (verb”<simulation_ID>.output#..bin”), (texttt{file_io.cpp}).

• Update of verb”<simulation_ID>.status#..bin” (texttt{device.cu}).

19. Return to point ref{loopstart}, unless texttt{time.current >= time.total}, in which case the program continues to
point ref{loopend}.

1. label{loopend}Liberation of device memory (texttt{device.cu}).

2. Control returned to texttt{main(ldots)}, liberation of host memory (texttt{main.cpp}).

3. End of program, return status equal to zero (0) if no problems where encountered.

46 Chapter 1. Contents

https://code.google.com/p/thrust/

sphere Documentation, Release 2.15-beta

The length of the computational time steps (texttt{time.dt}) is calculated via equation ref{eq:dt}, where length of the
time intervals is defined by:

∆𝑡 = 0.075 min (𝑚/max(𝑘𝑛, 𝑘𝑡))

where 𝑚 is the particle mass, and 𝑘 are the elastic stiffnesses. The time step is set by this relationship in
initTemporal(). This equation ensures that the elastic wave (traveling at the speed of sound) is resolved a
number of times while traveling through the smallest particle.

subsubsection{Host and device memory types} label{subsubsec:memorytypes} A full, listed description
of the sphere source code variables can be found in appendix ref{apx:SourceCodeVariables}, page
pageref{apx:SourceCodeVariables}. There are three types of memory types employed in the sphere source code,
with different characteristics and physical placement in the system (figure ref{fig:memory}).

The floating point precision operating internally in sphere is defined in texttt{datatypes.h}, and can be either single
(texttt{float}), or double (texttt{double}). Depending on the GPU, the calculations are performed about double as
fast in single precision, in relation to double precision. In dense granular configuraions, the double precision however
results in greatly improved numerical stability, and is thus set as the default floating point precision. The floating point
precision is stored as the type definitions texttt{Float}, texttt{Float3} and texttt{Float4}. The floating point values in
the in- and output datafiles are emph{always} written in double precision, and, if necessary, automatically converted
by sphere.

Three-dimensional variables (e.g. spatial vectors in E^3) are in global memory stored as texttt{Float4} arrays, since
these read and writes can be coalesced, while e.g. texttt{float3}’s cannot. This alone yields a sim‘20times‘ performance
boost, even though it involves 25% more (unused) data.

paragraph{Host memory} is the main random-access computer memory (RAM), i.e. read and write memory accessible
by CPU processes, but inaccessible by CUDA kernels executed on the device.

paragraph{Device memory} is the main, global device memory. It resides off-chip on the GPU, often in the form
of 1–6 GB DRAM. The read/write access from the CUDA kernels is relatively slow. The arrays residing in (global)
device memory are prefixed by dev_ in the source code.

marginpar{Todo: Expand section on device memory types}

paragraph{Constant memory} values cannot be changed after they are set, and are used for scalars or small
vectors. Values are set in the transferToConstantMemory(...)} function, called in the beginning of
texttt{gpuMain(ldots)} in texttt{device.cu}. Constant memory variables have a global scope, and are prefixed by
devC_ in the source code.

%subsection{The main loop} %label{subsec:mainloop} %The sphere software calculates particle movement and ro-
tation based on the forces applied to it, by application of Newton’s law of motion (Newton’s second law with constant
particle mass: F_{mathrm{net}} = m cdot a_{mathrm{cm}}). This is done in a series of algorithmic steps, see list on
page pageref{loopstart}. The steps are explained in the following sections with reference to the sphere-source file;
texttt{sphere.cu}. The intent with this document is emph{not} to give a full theoretical background of the methods,
but rather how the software performs the calculations.

subsection{Performance} marginpar{Todo: insert graph of performance vs. np and performance vs. Delta t}. subsub-
section{Particles and computational time}

subsection{Compilation} label{subsec:compilation} An important note is that the texttt{C} examples of the NVIDIA
CUDA SDK should be compiled before sphere. Consult the Getting started guide, supplied by Nvidia for details on
this step.

sphere is supplied with several Makefiles, which automate the compilation process. To compile all components, open
a shell, go to the texttt{src/} subfolder and type texttt{make}. The GNU Make will return the parameters passed to
the individual CUDA and GNU compilers (texttt{nvcc} and texttt{gcc}). The resulting binary file (texttt{sphere}) is
placed in the sphere root folder. src/Makefile will also compile the raytracer.

1.5. sphere internals 47

sphere Documentation, Release 2.15-beta

1.5.2 C++ reference

class DEM

48 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• search

49

sphere Documentation, Release 2.15-beta

50 Chapter 2. Indices and tables

PYTHON MODULE INDEX

s
sphere, 15

51

sphere Documentation, Release 2.15-beta

52 Python Module Index

INDEX

A
acceleration() (sphere.sim method), 16
adaptiveGrid() (sphere.sim method), 17
addParticle() (sphere.sim method), 17
adjustUpperWall() (sphere.sim method), 17
adjustWall() (sphere.sim method), 17

B
bond() (sphere.sim method), 17
bondsRose() (sphere.sim method), 18
bulkPorosity() (sphere.sim method), 18

C
cellSize() (sphere.sim method), 18
checkerboardColors() (sphere.sim method), 18
cleanup() (in module sphere), 15
cleanup() (sphere.sim method), 18
consolidate() (sphere.sim method), 18
contactModel() (sphere.sim method), 18
contactParticleArea() (sphere.sim method), 18
contactSurfaceArea() (sphere.sim method), 19
convergence() (sphere.sim method), 19
convert() (in module sphere), 15
createBondPair() (sphere.sim method), 19
currentNormalStress() (sphere.sim method), 19
currentTime() (sphere.sim method), 19

D
defaultParams() (sphere.sim method), 19
defineWorldBoundaries() (sphere.sim method),

20
deleteAllParticles() (sphere.sim method), 20
deleteParticle() (sphere.sim method), 20
DEM (C++ class), 48
disableFluidPressureModulation()

(sphere.sim method), 20
disableTopWallNormalStressModulation()

(sphere.sim method), 20
dry() (sphere.sim method), 20

E
energy() (sphere.sim method), 20

F
findAllAverageParticlePairAreas()

(sphere.sim method), 21
findAllContactSurfaceAreas() (sphere.sim

method), 21
findContactStresses() (sphere.sim method), 21
findCoordinationNumber() (sphere.sim method),

21
findHydraulicConductivities() (sphere.sim

method), 21
findLoadedContacts() (sphere.sim method), 21
findMeanCoordinationNumber() (sphere.sim

method), 21
findNormalForces() (sphere.sim method), 21
findOverlaps() (sphere.sim method), 22
findPermeabilities() (sphere.sim method), 22
forcechains() (sphere.sim method), 22
forcechainsRose() (sphere.sim method), 22
frictionalEnergy() (sphere.sim method), 22

G
generateBimodalRadii() (sphere.sim method), 22
generateRadii() (sphere.sim method), 22

H
hydraulicConductivity() (sphere.sim method),

23
hydraulicDiffusivity() (sphere.sim method), 23
hydraulicPermeability() (sphere.sim method),

23

I
id() (sphere.sim method), 23
idAppend() (sphere.sim method), 23
inertiaParameterPlanarShear() (sphere.sim

method), 23
initFluid() (sphere.sim method), 23
initGrid() (sphere.sim method), 24
initGridAndWorldsize() (sphere.sim method), 24
initGridPos() (sphere.sim method), 24
initRandomGridPos() (sphere.sim method), 24
initRandomPos() (sphere.sim method), 24

53

sphere Documentation, Release 2.15-beta

initTemporal() (sphere.sim method), 25

K
kineticEnergy() (sphere.sim method), 25

L
largestFluidTimeStep() (sphere.sim method), 25
largestMass() (sphere.sim method), 25

M
mass() (sphere.sim method), 25
momentOfInertia() (sphere.sim method), 26
momentum() (sphere.sim method), 26

N
normalBoundariesXY() (sphere.sim method), 26

P
periodicBoundariesX() (sphere.sim method), 26
periodicBoundariesXY() (sphere.sim method), 26
plotContacts() (sphere.sim method), 26
plotConvergence() (sphere.sim method), 26
plotFluidDiffAdvPresZ() (sphere.sim method),

26
plotFluidPressuresY() (sphere.sim method), 27
plotFluidPressuresZ() (sphere.sim method), 27
plotFluidVelocitiesY() (sphere.sim method), 27
plotFluidVelocitiesZ() (sphere.sim method), 27
plotLoadCurve() (sphere.sim method), 28
plotPrescribedFluidPressures() (sphere.sim

method), 28
plotSinFunction() (sphere.sim method), 28
porosities() (sphere.sim method), 28
porosity() (sphere.sim method), 28

R
randomBondPairs() (sphere.sim method), 29
readbin() (sphere.sim method), 29
readfirst() (sphere.sim method), 29
readlast() (sphere.sim method), 29
readsecond() (sphere.sim method), 29
readstep() (sphere.sim method), 29
readTime() (sphere.sim method), 29
render() (in module sphere), 15
render() (sphere.sim method), 30
ReynoldsNumber() (sphere.sim method), 16
rotationalEnergy() (sphere.sim method), 30
run() (in module sphere), 16
run() (sphere.sim method), 30

S
scaleSize() (sphere.sim method), 30
setBeta() (sphere.sim method), 31

setDampingNormal() (sphere.sim method), 31
setDampingTangential() (sphere.sim method), 31
setDEMstepsPerCFDstep() (sphere.sim method),

31
setDynamicFriction() (sphere.sim method), 31
setFluidBottomFixedFlux() (sphere.sim

method), 31
setFluidBottomFixedPressure() (sphere.sim

method), 32
setFluidBottomNoFlow() (sphere.sim method), 32
setFluidBottomNoFlowNoSlip() (sphere.sim

method), 32
setFluidCompressibility() (sphere.sim

method), 32
setFluidDensity() (sphere.sim method), 32
setFluidPressureModulation() (sphere.sim

method), 32
setFluidTopFixedFlux() (sphere.sim method), 32
setFluidTopFixedPressure() (sphere.sim

method), 32
setFluidTopNoFlow() (sphere.sim method), 33
setFluidTopNoFlowNoSlip() (sphere.sim

method), 33
setFluidViscosity() (sphere.sim method), 33
setFluidXFixedPressure() (sphere.sim method),

33
setFluidXNoFlow() (sphere.sim method), 33
setFluidXPeriodic() (sphere.sim method), 33
setFluidYFixedPressure() (sphere.sim method),

33
setFluidYNoFlow() (sphere.sim method), 33
setFluidYPeriodic() (sphere.sim method), 33
setGamma() (sphere.sim method), 33
setMaxIterations() (sphere.sim method), 34
setPermeabilityGrainSize() (sphere.sim

method), 34
setPermeabilityPrefactor() (sphere.sim

method), 34
setStaticFriction() (sphere.sim method), 34
setStiffnessNormal() (sphere.sim method), 34
setStiffnessTangential() (sphere.sim method),

34
setTheta() (sphere.sim method), 34
setTolerance() (sphere.sim method), 35
setTopWallNormalStressModulation()

(sphere.sim method), 35
setYoungsModulus() (sphere.sim method), 35
shear() (sphere.sim method), 35
sheardisp() (sphere.sim method), 36
shearDisplacement() (sphere.sim method), 35
shearStrain() (sphere.sim method), 35
shearStrainRate() (sphere.sim method), 36
shearStress() (sphere.sim method), 36
shearVel() (sphere.sim method), 36

54 Index

sphere Documentation, Release 2.15-beta

shearVelocity() (sphere.sim method), 36
show() (sphere.sim method), 36
sim (class in sphere), 16
smallestMass() (sphere.sim method), 36
sphere (module), 15
staticGrid() (sphere.sim method), 36
status() (in module sphere), 42
status() (sphere.sim method), 37
surfaceArea() (sphere.sim method), 37

T
thinsection_x1x3() (sphere.sim method), 37
thinsectionVideo() (in module sphere), 42
torqueScript() (sphere.sim method), 37
torqueScriptParallel3() (in module sphere), 43
totalFrictionalEnergy() (sphere.sim method),

38
totalKineticEnergy() (sphere.sim method), 38
totalMass() (sphere.sim method), 38
totalMomentum() (sphere.sim method), 38
totalRotationalEnergy() (sphere.sim method),

38
totalViscousEnergy() (sphere.sim method), 38
triaxial() (sphere.sim method), 38

U
uniaxialStrainRate() (sphere.sim method), 38

V
V_sphere() (in module sphere), 15
video() (in module sphere), 43
video() (sphere.sim method), 38
viscousEnergy() (sphere.sim method), 39
visualize() (sphere.sim method), 39
voidRatio() (sphere.sim method), 39
volume() (sphere.sim method), 40

W
wall0iz() (sphere.sim method), 40
wet() (sphere.sim method), 40
writebin() (sphere.sim method), 42
writeFluidVTK() (sphere.sim method), 40
writeVTK() (sphere.sim method), 41
writeVTKall() (sphere.sim method), 41
writeVTKforces() (sphere.sim method), 42

Z
zeroKinematics() (sphere.sim method), 42

Index 55

	Contents
	Introduction and Installation
	Discrete element method
	Fluid simulation and particle-fluid interaction
	Python API
	sphere internals

	Indices and tables
	Python Module Index
	Index

