
DATA PARALLEL COMPUTING 2011 1

CUDA raytracing algorithm for visualizing
discrete element model output

Anders Damsgaard Christensen, 20062213

Abstract—A raytracing algorithm is constructed using the
CUDA API for visualizing output from a CUDA discrete element
model, which outputs spatial information in dynamic particle
systems. The raytracing algorithm is optimized with constant
memory and compilation flags, and performance is measured as
a function of the number of particles and the number of pixels.
The execution time is compared to equivalent CPU code, and the
speedup under a variety of conditions is found to have a mean
value of 55.6 times.

Index Terms—CUDA, discrete element method, raytracing

I. INTRODUCTION

V ISUALIZING systems containing many spheres using
traditional object-order graphics rendering can often re-

sult in very high computational requirements, as the usual
automated approach is to construct a meshed surface with a
specified resolution for each sphere. The memory requirements
are thus quite high, as each surface will consist of many
vertices. Raytracing [?] is a viable alternative, where spheric
entities are saved as data structures with a centre coordinate
and a radius. The rendering is performed on the base of these
values, which results in a perfectly smooth surfaced sphere. To
accelerate the rendering, the algorithm is constructed utilizing
the CUDA API [?], where the problem is divided into n×m
threads, corresponding to the desired output image resolution.
Each thread iterates through all particles and applies a simple
shading model to determine the final RGB values of the pixel.

Previous studies of GPU or CUDA implementations of
ray tracing algorithms reported major speedups, compared to
corresponding CPU applications (e.g. [?], [?], [?], [?]). None
of the software was however found to be open-source and GPL
licensed, so a simple raytracer was constructed, customized to
render particles, where the data was stored in a specific data
format.

A. Discrete Element Method

The input particle data to the raytracer is the output of a
custom CUDA-based Discrete Element Method (DEM) appli-
cation currently in development. The DEM model is used to
numerically simulate the response of a drained, soft, granular
sediment bed upon normal stresses and shearing velocities
similar to subglacial environments under ice streams [?]. In
contrast to laboratory experiments on granular material, the
discrete element method [?] approach allows close monitoring
of the progressive deformation, where all involved physical

Contact: anders.damsgaard@geo.au.dk
Webpage: http://users-cs.au.dk/adc
Manuscript, last revision: December 18, 2012.

parameters of the particles and spatial boundaries are readily
available for continuous inspection.

The discrete element method (DEM) is a subtype of molecu-
lar dynamics (MD), and discretizes time into sufficiently small
timesteps, and treats the granular material as discrete grains,
interacting through contact forces. Between time steps, the
particles are allowed to overlap slightly, and the magnitude of
the overlap and the kinematic states of the particles is used to
compute normal- and shear components of the contact force.
The particles are treated as spherical entities, which simplifies
the contact search. The spatial simulation domain is divided
using a homogeneous, uniform, cubic grid, which greatly
reduces the amount of possible contacts that are checked
during each timestep. The grid-particle list is sorted using
Thrust1, and updated each timestep. The new particle positions
and kinematic values are updated by inserting the resulting
force and torque into Newton’s second law, and using a Taylor-
based second order integration scheme to calculate new linear
and rotational accelerations, velocities and positions.

B. Application usage

The CUDA DEM application is a command line executable,
and writes updated particle information to custom binary
files with a specific interval. This raytracing algorithm is
constructed to also run from the command line, be non-
interactive, and write output images in the PPM image format.
This format is chosen to allow rendering to take place on
cluster nodes with CUDA compatible devices.

Both the CUDA DEM and raytracing applications are open-
source2, although still under heavy development.

This document consists of a short introduction to the basic
mathematics behind the ray tracing algorithm, an explaination
of the implementation using the CUDA API [?] and a presen-
tation of the results. The CUDA device source code and C++
host source code for the ray tracing algorithm can be found
in the appendix, along with instructions for compilation and
execution of the application.

II. RAY TRACING ALGORITHM

The goal of the ray tracing algorithm is to compute the
shading of each pixel in the image [?]. This is performed by
creating a viewing ray from the eye into the scene, finding
the closest intersection with a scene object, and computing
the resulting color. The general structure of the program is
demonstrated in the following pseudo-code:

1http://code.google.com/p/thrust/
2http://users-cs.au.dk/adc/files/sphere.tar.gz

DATA PARALLEL COMPUTING 2011 2

f o r each p i x e l do
compute v iewing r a y o r i g i n and d i r e c t i o n
i t e r a t e t h r o u g h o b j e c t s and f i n d t h e c l o s e s t h i t
s e t p i x e l c o l o r t o v a l u e computed from h i t ←↩

p o i n t , l i g h t , n

The implemented code does not utilize recursive rays, since
the modeled material grains are matte in appearance.

A. Ray generation

The rays are in vector form defined as:

p(t) = e + t(s− e) (1)

The perspective can be either orthograpic, where all viewing
rays have the same direction, but different starting points,
or use perspective projection, where the starting point is
the same, but the direction is slightly different [?]. For the
purposes of this application, a perspective projection was
chosen, as it results in the most natural looking image. The
ray data structures were held flexible enough to allow an easy
implementation of orthographic perspective, if this is desired
at a later point.

The ray origin e is the position of the eye, and is constant.
The direction is unique for each ray, and is computed using:

s− e = −dw + uu + vv (2)

where {u,v,w} are the orthonormal bases of the camera
coordinate system, and d is the focal length [?]. The camera
coordinates of pixel (i, j) in the image plane, u and v, are
calculated by:

u = l + (r − l)(i+ 0.5)/n

v = b+ (t− b)(j + 0.5)/m

where l, r, t and b are the positions of the image borders (left,
right, top and bottom) in camera space. The values n and m
are the number of pixels in each dimension.

B. Ray-sphere intersection

Given a sphere with a center c, and radius R, a equation can
be constrained, where p are all points placed on the sphere
surface:

(p− c) · (p− c)−R2 = 0 (3)

By substituting the points p with ray equation 1, and rearrang-
ing the terms, a quadratic equation emerges:

(d · d)t2 + 2d · (e− c)t+ (e− c) · (e− c)−R2 = 0 (4)

The number of ray steps t is the only unknown, so the number
of intersections is found by calculating the determinant:

∆ = (2(d · (e− c)))2 − 4(d · d)((e− c) · (e− c)−R2 (5)

A negative value denotes no intersection between the sphere
and the ray, a value of zero means that the ray touches the
sphere at a single point (ignored in this implementation), and
a positive value denotes that there are two intersections, one
when the ray enters the sphere, and one when it exits. In the
code, a conditional branch checks wether the determinant is

positive. If this is the case, the distance to the intersection in
ray “steps” is calculated using:

t =
−d · (e− c)±√η

(d · d)
(6)

where

η = (d · (e− c))2 − (d · d)((e− c) · (e− c)−R2)

Only the smallest intersection (tminus) is calculated, since
this marks the point where the sphere enters the particle. If
this value is smaller than previous intersection distances, the
intersection point p and surface normal n at the intersection
point is calculated:

p = e + tminusd (7)

n = 2(p− c) (8)

The intersection distance in vector steps (tminus) is saved in
order to allow comparison of the distance with later intersec-
tions.

C. Pixel shading

The pixel is shaded using Lambertian shading [?], where the
pixel color is proportional to the angle between the light vector
(l) and the surface normal. An ambient shading component is
added to simulate global illumination, and prevent that the
spheres are completely black:

L = kaIa + kdId max(0, (n · l)) (9)

where the a and d subscripts denote the ambient and diffusive
(Lambertian) components of the ambient/diffusive coefficients
(k) and light intensities (I). The pixel color L is calculated
once per color channel.

D. Computational implementation

The above routines were first implemented in CUDA for
device execution, and afterwards ported to a CPU C++ equiv-
alent, used for comparing performance. The CPU raytracing
algorithm was optimized to shared-memory parallelism using
OpenMP [?]. The execution method can be chosen when
launching the raytracer from the command line, see the
appendix for details. In the CPU implementation, all data was
stored in linear arrays of the right size, ensuring 100% memory
efficiency.

III. CUDA IMPLEMENTATION

When constructing the algorithm for execution on the
GPGPU device, the data-parallel nature of the problem (SIMD:
single instruction, multiple data) is used to deconstruct the
rendering task into a single thread per pixel. Each thread
iterates through all particles, and ends up writing the resulting
color to the image memory.

The application starts by reading the discrete element
method data from a custom binary file. The particle data,
consisting of position vectors in three-dimensional Euclidean
space (R3) and particle radii, is stored together in a float4
array, with the particle radius in the w position. This has large

DATA PARALLEL COMPUTING 2011 3

Fig. 1. Sample output of GPU raytracer rendering of 512 particles.

Fig. 2. Sample output of GPU raytracer rendering of 50 653 particles.

advantages to storing the data in separate float3 and float
arrays; Using float4 (instead of float3) data allows
coalesced memory access [?] to the arrays of data in device
memory, resulting in efficient memory requests and transfers
[?], and the data access pattern is coherent and convenient.
Other three-component vectors were also stored as float4
for the same reasons, even though this sometimes caused a
slight memory redundancy. The image data is saved in a
three-channel linear unsigned char array. Global memory
access are coalesced whenever possible. Divergent branches in
the kernel code were avoided as much as possible [?].

The algorithm starts by allocating memory on the device
for the particle data, the ray parameters, and the image RGB
values. Afterwards, all particle data is transfered from the host-
to the device memory.

All pixel values are initialized to [R,G,B] = [0, 0, 0], which
serves as the image background color. Afterwards, a kernel is
executed with a thread for each pixel, testing for intersections
between the pixel’s viewing ray and all particles, and returning
the closest particle. This information is used when computing
the shading of the pixel.

After all pixel values have been computed, the image data
is transfered back to the host memory, and written to the
disk. The application ends by liberating dynamically allocated
memory on both the device and the host.

A. Thread and block layout

The thread/block layout passed during kernel launches is
arranged in the following manner:

dim3 t h r e a d s (1 6 , 16) ;
dim3 b l o c k s ((wid th +15) / 1 6 , (h e i g h t +15) / 1 6) ;

The image pixel position of the thread can be determined
from the thread- and block index and dimensions. The layout
corresponds to a thread tile size of 256, and a dynamic number
of blocks, ensured to fit the image dimensions with only small
eventual redundancy [?]. Since this method will initialize extra
threads in most situations, all kernels (with return type void)
start by checking wether the thread-/block index actually falls
inside of the image dimensions:

i n t i = t h r e a d I d x . x + b l o c k I d x . x ∗ ←↩
blockDim . x ;

i n t j = t h r e a d I d x . y + b l o c k I d x . y ∗ ←↩
blockDim . y ;

unsigned i n t mempos = x + y ∗ blockDim . x ←↩
∗ gridDim . x ;

i f (mempos > p i x e l s)
re turn ;

The linear memory position (mempos) is used as the index
when reading or writing to the linear arrays residing in global
device memory.

B. Image output

After completing all pixel shading computations on the
device, the image data is transfered back to the host memory,
and together with a header written to a PPM3 image file. This
file is converted to the PNG format using ImageMagick.

C. Performance

Since this simple raytracing algorithm generates a single
non-recursive ray for each pixel, which in turn checks all
spheres for intersection, the application is expected to scale
in the form of O(n×m×N), where n and m are the output
image dimensions in pixels, and N is the number of particles.

The data transfer between the host and device is kept at
a bare minimum, as the intercommunication is considered a

3http://paulbourke.net/dataformats/ppm/

DATA PARALLEL COMPUTING 2011 4

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

Ti
m

e
[m

s]

Particles

Device kernels
Host<->device transfer and allocation

Host kernels

Fig. 3. Performance scaling with varying particle numbers at image
dimensions 800 by 800 pixels.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06 1e+07

Ti
m

e
[m

s]

Pixels

Device kernels
Host<->device transfer and allocation

Host kernels

Fig. 4. Performance scaling with varying image dimensions (n ×m) with
5832 particles.

bottleneck in relation to the potential device performance[?].
Thread synchronization points are only inserted were neces-
sary, and the code is optimized by the compilers to the target
architecture (see appendix).

The host execution time was profiled using a clock()
based CPU timer from time.h, which was normalized using
the constant CLOCKS_PER_SEC.

The device execution time was profiled using two
cudaEvent_t timers, one measuring the time spent in
the entire device code section, including device memory
allocation, data transfer to- and from the host, execution
of the kernels, and memory deallocation. The other timer
only measured time spent in the kernels. The threads were
synchronized before stopping the timers. A simple CPU timer
using clock() will not work, since control is returned to the
host thread before the device code has completed all tasks.

Figures 3 and 4 show the profiling results, where the number
of particles and the image dimensions were varied. With
exception of executions with small image dimensions, the
kernel execution time results agree with the O(n ×m × N)
scaling predicion.

The device memory allocation and data transfer was also

profiled, and turns out to be only weakly dependant on the
particle numbers (fig. 3), but more strongly correlated to
image dimensions (fig. 4). As with kernel execution times, the
execution time converges against an overhead value at small
image dimensions.

The CPU time spent in the host kernels proves to be
linear with the particle numbers, and linear with the image
dimensions. This is due to the non-existant overhead caused by
initialization of the device code, and reduced memory transfer.

The ratio between CPU computational times and the sum of
the device kernel execution time and the host—device memory
transfer and additional memory allocation was calculated, and
had a mean value of 55.6 and a variance of 739 out of the 11
comparative measurements presented in the figures. It should
be noted, that the smallest speedups were recorded when using
very small image dimensions, probably unrealistic in real use.

As the number of particles are not known by compilation,
it is not possible to store particle positions and -radii in con-
stant memory. Shared memory was also on purpose avoided,
since the memory per thread block (64 kb) would not be
sufficient in rendering of simulations containing containing
more than 16 000 particles (16 000 float4 values). The
constant memory was however utilized for storing the camera
related parameters; the orthonormal base vectors, the observer
position, the image dimensions, the focal length, and the light
vector.

Previous GPU implementations often rely on k-D trees,
constructed as an sorting method for static scene objects[?],
[?]. A k-D tree implementation would drastically reduce the
global memory access induced by each thread, so it is therefore
the next logical step with regards to optimizing the ray tracing
algorithm presented here.

IV. CONCLUSION

This document presented the implementation of a basic
ray tracing algorithm, utilizing the highly data-parallel na-
ture of the problem when porting the work load to CUDA.
Performance tests showed the expected, linear correlation
between image dimensions, particle numbers and execution
time. Comparisons with an equivalent CPU algorithm showed
large speedups, typically up to two orders of magnitude. This
speedup did not come at a cost of less correct results.

The final product will come into good use during further
development and completion of the CUDA DEM particle
model, and is ideal since it can be used for offline rendering
on dedicated, heterogeneous GPU-CPU computing nodes. The
included device code will be the prefered method of execution,
whenever the host system allows it.

APPENDIX A
TEST ENVIRONMENT

The raytracing algorithm was developed, tested and profiled
on a mid 2010 Mac Pro with a 2.8 Ghz Quad-Core Intel
Xeon CPU and a NVIDIA Quadro 4000 for Mac, dedicated
to CUDA applications. The CUDA driver was version 4.0.50,
the CUDA compilation tools release 4.0, V0.2.1221. The GCC

DATA PARALLEL COMPUTING 2011 5

tools were version 4.2.1. Each CPU core is multithreaded by
two threads for a total of 8 threads.

The CUDA source code was compiled with nvcc, and
linked to g++ compiled C++ source code with g++. For all
benchmark tests, the code was compiled with the following
commands:

g++ −c −Wall −O3 −a r c h x86 64 −fopenmp . . .
nvcc −c −u s e f a s t m a t h −gencode ←↩

a r c h =compute 20 , code=sm 20 −m64 . . .
g++ −a r c h x86 64 −l c u d a − l c u d a r t −fopenmp ←↩

∗ . o −o r t

When profiling device code performance, the application was
executed two times, and the time of the second run was noted.
This was performed to avoid latency caused by device driver
initialization.

The host system was measured to have a memory bandwidth
of 4642.1 MB/s when transfering data from the host to the
device, and 3805.6 MB/s when transfering data from the
device to the host.

