A quick-start guide to Git

Anders Damsgaard
https://adamsgaard.dk,|andersd@riseup.net

Last revision: January 1, 2017

1 What is Git?

Git is the most popular command-line tool for version control. It is most commonly used
to track changes to plain-text files such as source code. When a software project is ini-
tialized as a Git repository, the history of the tracked files are recorded through a series of
changes. When the user performs changes to the tracked files, she can choose to commit
these changes. Git repositories can be managed through online services such as GithubEL
which allows the changes to be synchronized between multiple contributers and end users.
The same repository can contain multiple versions of the same files. These coexisting ver-
sions are called branches.

Git usage is typically very verbose and by design weighs explicitness over convenience.
This ensures that its default behavior does not lead to unintended outcomes.

2 Installation
Please refer to the official documentatiorﬂ for platform-specific instructions on how to in-
stall Git. My prefered installation method on OS X is through Homebre
$ brew install git
On Debian-based systems, Git can be installed through the advanced package tool:
$ apt-get 1install git

Git has excellent built-in documentation through its man page (i.e. man git). For doc-
umentation on a sub-command such as git add, see its documentation with man git-add.
For more complex tasks, I recommend referring to a Git handbook or searching the web (in
that order).

Thttps://github.com
thtps://git—scm.com/book/en/vZ/Getting—Started—Installing—Git
3http://brew.sh

https://adamsgaard.dk
andersd@riseup.net
https://github.com
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://brew.sh

3 Getting started

Before using Git for version control, it is a good idea to record some information about
yourself. This makes it is easy to see who specific commits can be attributed to when
working on projects with multiple contributors. The user information is stored in a plain-
text file in the home directory (~/.gitconfig), and can be created with the following
commands:

$ git config --global user.name "John Doe"
$ git config --global user.email "john-doe-farms@aol.com"

4 Initializing a repository

In order to track changes to files in a directory, the directory needs to be initialized as
a repository. Let’s say that we want to track the changes to a file arithmetic.c which
located in the directory ~/src/calculator. We start off by initializing the directory as a
repository:

$ cd ~/src/calculator

$ git init

Initialized empty Git repository in ~/src/calculator/.git/
Git lets us know that the directory is initialized as a new repository, and that the hidden
sub-directory . git is used for the files related to the version controﬂ

It is important to realize that just because you initialize a directory as a Git repository,

the files and subdirectories are not automatically tracked! You need to manually specify
which files inside of the directory you want to include in the version control system. There
are several important reasons for this. As an example, during the compilation step many
compilers create object files which are linked together to create the final executable bina-
ries. These object files are created in machine code, and can have a significant size on the
file system. If Git automatically recorded the changes and versions to all files inside of the
repository, it would save all changes in the binary object files, which are of no use since
they can be readily reconstructed from the source code.

5 Creating a local copy of an online repository

If you want to create a local copy of an online repository you can download a clone of it in
its current stage to your local file system:

$ git clone git://github.com/john-doe/tractor-simulation

“This directory contains many interesting files, and I encourage you to explore it when you are more familiar
with Git.

This will checkout the online repository on Github into a corresponding directory in the
local directory. You can also choose to clone over other protocols such as SSH or HTTPS if
you prefer.

The local repository will remember where it was cloned from. If you have write per-
missions to the online repository, you can upload your local commits using git push.

6 Adding files and commiting changes

To add a file to the version-control system inside a repository, use the following command:
$ git add arithmetic.c

One or more changes to the tracked files in a repository must be accompanied by a
commit message. The commit message should ideally be short and descriptive of the changes
that are contained in the commit. The commit messages are logged. It should be easy for
a user to glance through the log of commit messages and understand the changes without
reading the changes to the files themselves. This is what sets version-control systems aside
from automatic backups. Only the user herself has the ability to identify when a set of
changes are complete and significant, and can formulate a meaningful description of the
changes in their respective context.

In case you have forgotten what you have changed in a file, use the following command:

$ git diff -- arithmetic.c

To commit all files which have been added to the repository, you can use the following
command:

$ git commit -m "First commit of arithmetic.c"

If you ommit the -m flag and message string (i.e. simply type git commit), Git will open
your favorite command-line edito You then write the commit message in the editor, and
finalize the commit by saving and exiting the file.

If you perform subsequent edits to the file, you need to commit the new changes once
again. We can either once again add the file and commit the changes:

$ git add arithmetic.c
$ git commit -m "Implemented multiplication"

Alternatively, since the file arithmetic.c is already added to the repository, you can com-
mit all changes to all tracked files in the repository with a single command:

$ git commit -a -m "Implemented multiplication"

Are you not sure which files changed since the last commit? Git can show you an overview
of the current state:

$ git status

5You can set which editor you want to use using the EDITOR environment variable in e.g. ~/.bashrc.

7 Inspecting repository changes and reverting to a previous com-
mit
Git can show you an overview of all recorded changes in the repository:

$ git log

commit 2745f1e3b4803f1c8728089667a18f3178cd18dc
Author: John Doe <john-doe-farms@aol.com>

Date: Fri Sep 2 10:22:59 2016 -0700

Implemented multiplication

commit 3329dfalb6bfecc00353d1e9db50bcab9fb41521
Author: John Doe <john-doe-farms@aol.com>
Date: Fri Sep 2 10:22:13 2016 -0700

First commit of arithmetic.c
Git can show the changes to the files between any two commits:

$ git diff 3329dfalb 2745fle3b

diff --git a/arithmetic.c b/arithmetic.c
index e69de29..523d72b 100644

-—- a/arithmetic.c

+++ b/arithmetic.c

@@ -0,0 +1,4 @@

+double multiply(double x, double y)

+{

+ return x * y;

+}

In case you want to roll back your most recent changes and revert the repository to a
stage corresponding to an earlier commit. Each commit has an uniquely identifying string
which is shown with the above command. To revert you need to supply the first 9 characters
of this string:

$ git checkout 3329dfalb

This will revert any changes contained in subsequent commits. In case you change your
mind and want to go back to the most recent commit, use:

$ git revert HEAD

The special string HEAD refers to the most recent commit, and the commit before that is
referred to by HEAD*, while the third-most recent commit is HEADA . These special strings
are convenient, for example when you want to see what changed during the most recent
commit, which can be done with the command git diff HEAD”» HEAD filename.

8 Branching and merging

Git allows you to have multiple versions (branches) of the same repository. The first step
is to create a new branch and give it a suitable name:

$ git checkout -b new_interface

Subsequent commits are staged to the new branch new_interface. You can see which
branches are present in the repository with git branch:

$ git branch
master
* new_interface

where master is the original branch. The asterisk denotes what current branch is active.
You can switch between branches, which will automatically apply all relevant patches to
the affected files:

$ git checkout master

To delete a branch, use git branch -d new_interface. To merge another branch into
your current active branch, use:

$ git merge new_interface

When merging, all commits and file changes performed in a branch are applied to the
currently active branch.

9 Ignoring files

Many compilers create auxillary files which are never relevant to track in a version-control
system, but clutter your repository overview when using commands such as git status
or git commit -a. You can specify which files Git should ignore by their filename in a
file at the root of the repository in a file named .gitignore. For a repository containing
C code, an example . gitignore file could contain:

*.0
This will ignore all object files. For a BIEX repository the file could contain:

.aux
.glo
Lidx
.log
.toc
.ist
.acn
.acr
.alg

b T . . R, . S

.bbl
.blg
.dvi
.glg
.gls
ilg
.ind
. lof
.lot
.maf
.mtc

.out
. xdy

b I I S . S S S S S S I .

.mtcl

.synctex.gz

It is up to you to specify the contents of the . gitignore file. Maybe your program gener-
ates output files, which should not be tracked. Simply add their names or file type to the
.gitignore file and never encounter them in your Git workflow again.

10 Extra: Useful shell aliases

I like to bind short aliases to the most commonly Git commands. I do this by appending
the following to the rc file of my shell (~/.zshrc or ~/.bashrc):

alias
alias
alias
alias
alias
alias
alias
alias
alias
alias

gs=’git status | less’

gl="git log -—-graph --oneline --decorate --all’
ga=’git add’

gd="git diff —-’

gc="git commit -v’

gca=’git commit --all --verbose’

gp=’git push’

gpu=’git pull’

gcgp="git commit --verbose && git push’
gcagp="git commit --all --verbose && git push’

Using these aliases I can quickly add a file (ga file.c). Alternatively, I can quickly commit
all changes to all files that are already tracked in the repository (gca). With gl I can quickly
see the commit tags and commit messages in short form, and scroll up and down with j and
k or the arrow keys. gs gives me a quick overview of the changes in the current repository,
and uses the same keys as gl for scrolling.

	What is Git?
	Installation
	Getting started
	Initializing a repository
	Creating a local copy of an online repository
	Adding files and commiting changes
	Inspecting repository changes and reverting to a previous commit
	Branching and merging
	Ignoring files
	Extra: Useful shell aliases

