simulation.jl (14531B)
1 #!/usr/bin/env julia 2 import Granular 3 import ArgParse 4 5 verbose = false 6 7 function parse_command_line() 8 s = ArgParse.ArgParseSettings() 9 ArgParse.@add_arg_table s begin 10 "--width" 11 help = "strait width [m]" 12 arg_type = Float64 13 default = 6e3 14 "--E" 15 help = "Young's modulus [Pa]" 16 arg_type = Float64 17 default = 2e7 18 "--nu" 19 help = "Poisson's ratio [-]" 20 arg_type = Float64 21 default = 0.285 22 "--k_n" 23 help = "normal stiffness [N/m]" 24 arg_type = Float64 25 default = 1e7 26 "--k_t" 27 help = "tangential stiffness [N/m]" 28 arg_type = Float64 29 default = 1e7 30 "--gamma_n" 31 help = "normal viscosity [N/(m/s)]" 32 arg_type = Float64 33 default = 0. 34 "--gamma_t" 35 help = "tangential viscosity [N/(m/s)]" 36 arg_type = Float64 37 default = 0. 38 "--mu_s" 39 help = "static friction coefficient [-]" 40 arg_type = Float64 41 default = 0.3 42 "--mu_d" 43 help = "dynamic friction coefficient [-]" 44 arg_type = Float64 45 default = 0.3 46 "--mu_s_wall" 47 help = "static friction coefficient for wall particles [-]" 48 arg_type = Float64 49 default = 0.3 50 "--mu_d_wall" 51 help = "dynamic friction coefficient for wall particles [-]" 52 arg_type = Float64 53 default = 0.3 54 "--tensile_strength" 55 help = "the maximum tensile strength [Pa]" 56 arg_type = Float64 57 default = 0. 58 "--r_min" 59 help = "minimum grain radius [m]" 60 arg_type = Float64 61 default = 6e2 62 "--r_max" 63 help = "maximum grain radius [m]" 64 arg_type = Float64 65 default = 1.35e3 66 "--thickness" 67 help = "grain thickness [m]" 68 arg_type = Float64 69 default = 1. 70 "--rotating" 71 help = "allow the grains to rotate" 72 arg_type = Bool 73 default = true 74 "--ocean_vel_fac" 75 help = "ocean velocity factor [-]" 76 arg_type = Float64 77 default = 0.0 78 "--atmosphere_vel_fac" 79 help = "atmosphere velocity [m/s]" 80 arg_type = Float64 81 default = 30.0 82 "--total_hours" 83 help = "hours of simulation time [h]" 84 arg_type = Float64 85 default = 12. 86 "--seed" 87 help = "seed for the pseudo RNG" 88 arg_type = Int 89 default = 1 90 "id" 91 help = "simulation id" 92 required = true 93 end 94 return ArgParse.parse_args(s) 95 end 96 97 function report_args(parsed_args) 98 println("Parsed args:") 99 for (arg,val) in parsed_args 100 println(" $arg => $val") 101 end 102 end 103 104 function run_simulation(id::String, 105 width::Float64, 106 E::Float64, 107 nu::Float64, 108 k_n::Float64, 109 k_t::Float64, 110 gamma_n::Float64, 111 gamma_t::Float64, 112 mu_s::Float64, 113 mu_d::Float64, 114 mu_s_wall::Float64, 115 mu_d_wall::Float64, 116 tensile_strength::Float64, 117 r_min::Float64, 118 r_max::Float64, 119 thickness::Float64, 120 rotating::Bool, 121 ocean_vel_fac::Float64, 122 atmosphere_vel_fac::Float64, 123 total_hours::Float64, 124 seed::Int) 125 126 info("## EXPERIMENT: " * id * " ##") 127 sim = Granular.createSimulation(id=id) 128 129 const Lx = 50.e3 130 const Lx_constriction = width 131 const Ly_constriction = 10e3 132 const L = [Lx, Lx*3./4., 1e3] 133 const dx = r_max*2. 134 135 #n = [Int(ceil(L[1]/dx/2.)), Int(ceil(L[2]/dx/2.)), 2] 136 n = [Int(ceil(L[1]/dx)), Int(ceil(L[2]/dx)), 2] 137 138 # Initialize confining walls, which are grains that are fixed in space 139 r = r_max 140 h = thickness 141 r_walls = r_min/2. 142 143 ## N-S segments 144 for y in linspace(r_walls, 145 Ly_constriction - 2.0*r_walls, 146 Int(ceil((Ly_constriction - 2.*r_walls)/(r_walls*2.)))) 147 148 Granular.addGrainCylindrical!(sim, 149 [Lx/2. - Lx_constriction/2. - r_walls, y], 150 r_walls, h, fixed=true, verbose=false) 151 152 Granular.addGrainCylindrical!(sim, 153 [Lx/2. + Lx_constriction/2. + r_walls, y], 154 r_walls, h, fixed=true, verbose=false) 155 156 end 157 158 dx = 2.*r_walls 159 160 ## Left island upper edge 161 x = r_walls:dx:(Lx/2. - Lx_constriction/2. - r_walls) 162 y = ones(length(x))*Ly_constriction 163 for i in 1:length(x) 164 Granular.addGrainCylindrical!(sim, [x[i], y[i]], r_walls, h, fixed=true, 165 verbose=false) 166 end 167 168 ## Right island upper edge 169 x = (Lx/2. + Lx_constriction/2. + r_walls):dx:(Lx - r_walls) 170 y = ones(length(x))*Ly_constriction 171 for i in 1:length(x) 172 Granular.addGrainCylindrical!(sim, [x[i], y[i]], r_walls, h, fixed=true, 173 verbose=false) 174 end 175 176 n_walls = length(sim.grains) 177 info("added $(n_walls) fixed grains as walls") 178 179 # Initialize ocean and atmosphere 180 sim.ocean = Granular.createRegularOceanGrid(n, L, name="no_flow") 181 sim.atmosphere = Granular.createRegularAtmosphereGrid(n, L, 182 name="uniform_flow") 183 sim.atmosphere.v[:, :, 1, 1] = -atmosphere_vel_fac 184 185 Granular.setGridBoundaryConditions!(sim.ocean, "inactive", "-y +y") 186 Granular.setGridBoundaryConditions!(sim.ocean, "impermeable", "-x +x") 187 188 # Initialize grains in wedge north of the constriction 189 Granular.sortGrainsInGrid!(sim, sim.ocean) 190 iy = 1 191 spacing_to_boundaries = r_walls 192 floe_padding = .5*r 193 noise_amplitude = floe_padding 194 Base.Random.srand(seed) 195 for iy=1:size(sim.ocean.xh, 2) 196 for ix=1:size(sim.ocean.xh, 1) 197 198 for it=1:25 # number of grains to try adding per cell 199 200 r_rand = r_min + Base.Random.rand()*(r - r_min) 201 pos = Granular.findEmptyPositionInGridCell(sim, sim.ocean, 202 ix, iy, 203 r_rand, n_iter=100, 204 seed=seed) 205 if !(typeof(pos) == Array{Float64, 1}) 206 continue 207 end 208 209 @inbounds if pos[2] < Ly_constriction + 210 spacing_to_boundaries + r_rand 211 continue 212 end 213 214 Granular.addGrainCylindrical!(sim, pos, r_rand, h, 215 verbose=false) 216 Granular.sortGrainsInGrid!(sim, sim.ocean) 217 end 218 end 219 end 220 n = length(sim.grains) - n_walls 221 info("added $(n) grains") 222 223 # Remove old simulation files 224 Granular.removeSimulationFiles(sim) 225 226 for i=1:length(sim.grains) 227 sim.grains[i].youngs_modulus = E 228 sim.grains[i].poissons_ratio = nu 229 sim.grains[i].contact_stiffness_normal = k_n 230 sim.grains[i].contact_stiffness_tangential = k_t 231 sim.grains[i].contact_viscosity_normal = gamma_n 232 sim.grains[i].contact_viscosity_tangential = gamma_t 233 sim.grains[i].contact_static_friction = mu_s 234 sim.grains[i].contact_dynamic_friction = mu_d 235 sim.grains[i].tensile_strength = tensile_strength 236 sim.grains[i].rotating = rotating 237 if sim.grains[i].fixed == true 238 sim.grains[i].contact_static_friction = mu_s_wall 239 sim.grains[i].contact_dynamic_friction = mu_d_wall 240 end 241 end 242 243 # Set temporal parameters 244 Granular.setTotalTime!(sim, total_hours*60.*60.) 245 #Granular.setOutputFileInterval!(sim, 60.*5.) # output every 5 mins 246 Granular.setOutputFileInterval!(sim, 60.) # output every 1 mins 247 Granular.setTimeStep!(sim, verbose=verbose) 248 Granular.writeVTK(sim, verbose=verbose) 249 250 println("$(sim.id) size before run") 251 Granular.printMemoryUsage(sim) 252 253 profile = false 254 255 ice_flux = Float64[] 256 avg_coordination_no = Float64[] 257 #ice_flux_sample_points = 100 258 #ice_flux = zeros(ice_flux_sample_points) 259 #dt_ice_flux = sim.time_total/ice_flux_sample_points 260 #time_since_ice_flux = 1e9 261 262 jammed = false 263 it_before_eval = 100 264 time_jammed = 0. 265 time_jammed_criterion = 60.*60. # define as jammed after this duration 266 267 # preallocate variables 268 ice_mass_outside_domain = x = y = x_ = y_ = r_rand = 0. 269 270 while sim.time < sim.time_total 271 272 # run simulation for it_before_eval time steps 273 for it=1:it_before_eval 274 if sim.time >= sim.time_total*.75 && profile 275 @profile Granular.run!(sim, status_interval=1, single_step=true, 276 verbose=verbose, show_file_output=verbose) 277 Profile.print() 278 profile = false 279 else 280 Granular.run!(sim, status_interval=1, single_step=true, 281 verbose=verbose, show_file_output=verbose) 282 end 283 end 284 285 if sim.time_iteration % 1_000 == 0 286 @printf("\n%s size t=%5f h\n", sim.id, sim.time/3600.) 287 Granular.printMemoryUsage(sim) 288 end 289 290 # assert if the system is jammed by looking at ice-floe mass change in 291 # the number of jammed grains 292 if jammed 293 time_jammed += sim.time_dt*float(it_before_eval) 294 if time_jammed >= 60.*60. # 1 h 295 info("$t s: system jammed for more than " * 296 "$time_jammed_criterion s, stopping simulation") 297 exit() 298 end 299 end 300 301 if sim.time_iteration % 1_000 == 0 302 ice_mass_outside_domain = 0. 303 for icefloe in sim.grains 304 if !icefloe.enabled 305 ice_mass_outside_domain += icefloe.mass 306 end 307 end 308 append!(ice_flux, ice_mass_outside_domain) 309 310 # get average coordination number around channel entrance 311 n_contacts_sum = 0 312 n_particles = 0 313 for i=1:length(sim.grains) 314 if !sim.grains[i].fixed && sim.grains[i].enabled 315 n_contacts_sum += sim.grains[i].n_contacts 316 n_particles += 1 317 end 318 end 319 append!(avg_coordination_no, float(n_contacts_sum/n_particles)) 320 end 321 322 # add new grains from the top 323 @inbounds for ix=2:(size(sim.ocean.xh, 1) - 1) 324 if length(sim.ocean.grain_list[ix, end]) == 0 325 for it=1:17 # number of grains to try adding per cell 326 # Uniform distribution 327 #r_rand = r_min + Base.Random.rand()*(r_max - r_min) 328 329 # Exponential distribution with scale=1 330 #r_rand = r_min + Base.Random.randexp()*(r_max - r_min)/4. 331 332 # Power-law distribution (sea ice power ≈ -1.8) 333 r_rand = Granular.randpower(1, -1.8, r_min, r_max) 334 335 pos = Granular.findEmptyPositionInGridCell(sim, sim.ocean, 336 ix, iy, 337 r_rand, n_iter=100) 338 if !(typeof(pos) == Array{Float64, 1}) 339 continue 340 end 341 342 Granular.addGrainCylindrical!(sim, pos, r_rand, h, 343 verbose=false, 344 youngs_modulus=E, 345 poissons_ratio=nu, 346 contact_stiffness_normal=k_n, 347 contact_stiffness_tangential= 348 k_t, 349 contact_viscosity_normal= 350 gamma_n, 351 contact_viscosity_tangential= 352 gamma_t, 353 contact_static_friction=mu_s, 354 contact_dynamic_friction= 355 mu_d, 356 tensile_strength= 357 tensile_strength, 358 rotating=rotating) 359 Granular.sortGrainsInGrid!(sim, sim.ocean) 360 end 361 end 362 end 363 364 end 365 366 Granular.writeParaviewPythonScript(sim) 367 t = linspace(0., sim.time_total, length(ice_flux)) 368 writedlm(sim.id * "-ice-flux.txt", [t, ice_flux, avg_coordination_no]) 369 sim = 0 370 gc() 371 end 372 373 function main() 374 parsed_args = parse_command_line() 375 report_args(parsed_args) 376 377 seed = parsed_args["seed"] 378 379 run_simulation(parsed_args["id"] * "-seed" * string(seed), 380 parsed_args["width"], 381 parsed_args["E"], 382 parsed_args["nu"], 383 parsed_args["k_n"], 384 parsed_args["k_t"], 385 parsed_args["gamma_n"], 386 parsed_args["gamma_t"], 387 parsed_args["mu_s"], 388 parsed_args["mu_d"], 389 parsed_args["mu_s_wall"], 390 parsed_args["mu_d_wall"], 391 parsed_args["tensile_strength"], 392 parsed_args["r_min"], 393 parsed_args["r_max"], 394 parsed_args["thickness"], 395 parsed_args["rotating"], 396 parsed_args["ocean_vel_fac"], 397 parsed_args["atmosphere_vel_fac"], 398 parsed_args["total_hours"], 399 seed) 400 end 401 402 main()