ridging_parameterization2.jl (3366B)
1 #/usr/bin/env julia 2 ENV["MPLBACKEND"] = "Agg" 3 import PyPlot 4 import LsqFit 5 import Granular 6 import DelimitedFiles 7 import Statistics 8 9 10 d = 0.02 # ice particle thickness [m] 11 L = 200*d # ice-floe length 12 E = 3.5e6 # Young's modulus 13 ν = 0.285 # Poisson's ratio [-] 14 ρ_w = 1e3 # Water density [kg/m^3] 15 g = 9.8 # Gravitational acceleration [m/s^2] 16 17 18 ################################################################################ 19 #### Compare ridging compressive stress with Granular.jl parameterization 20 21 h1 = Float64[] # thickness of ice floe 1 [m] 22 h2 = Float64[] # thickness of ice floe 2 [m] 23 comp_vel = Float64[] # compressive velocity [m/s] 24 N_max = Float64[] # compressive stress at yield point [Pa] 25 τ_max = Float64[] # shear stress at yield point [Pa] 26 t_yield = Float64[] # time of yield failure [t] 27 d_yield = Float64[] # compressive distance at yield failure [m] 28 N_late_avg = Float64[] # averaged post-failure compressive stress [Pa] 29 τ_late_avg = Float64[] # averaged post-failure shear stress [Pa] 30 tensile_strength = Float64[] # tensile strength [Pa] 31 32 nx1 = 100 33 nx2 = 100 34 ny1 = 10 35 ny2 = 15 36 h1 = ny1*d*sin(π/3) # correct thickness for triangular packing 37 h2 = ny2*d*sin(π/3) # correct thickness for triangular packing 38 cv = 0.2 39 sim = Granular.createSimulation() 40 fracture_toughness = 1.9e6 41 r1 = nx1*d 42 r2 = nx2*d 43 coulomb_friction = 0.4 44 Granular.addGrainCylindrical!(sim, [0., 0.], r1, h1, 45 fracture_toughness=fracture_toughness, 46 youngs_modulus=E, 47 contact_static_friction=coulomb_friction, 48 contact_dynamic_friction=coulomb_friction, 49 lin_vel=[cv, 0.], 50 fixed=true) 51 Granular.addGrainCylindrical!(sim, [r1 + r2 + 12*d, 0.0], r2, h2, 52 fracture_toughness=fracture_toughness, 53 youngs_modulus=E, 54 contact_static_friction=coulomb_friction, 55 contact_dynamic_friction=coulomb_friction, 56 fixed=true) 57 Granular.setTimeStep!(sim) 58 compressive_distance = 3.0 59 Granular.setTotalTime!(sim, compressive_distance/cv) 60 Granular.removeSimulationFiles(sim) 61 Granular.setOutputFileInterval!(sim, compressive_distance/cv * (1.0/10.0)) 62 dist = Float64[] 63 f_n_parameterization = Float64[] 64 N_parameterization = Float64[] 65 #println("Peak stress by fit: $(our_strength_model(min(h1[1], h2[1]), fit.param[1])) Pa") 66 r12 = 2.0*r1*r2/(r1 + r2) 67 Lz_12 = min(h1, h2) 68 while sim.time < sim.time_total 69 for i=1:1 70 Granular.run!(sim, single_step=true) 71 end 72 append!(dist, cv*sim.time) 73 append!(f_n_parameterization, -sim.grains[1].force[1]) 74 append!(N_parameterization, -sim.grains[1].force[1]/(r12*Lz_12)) 75 end 76 77 PyPlot.figure(figsize=(4,3)) 78 A_exp = ny1*d * d 79 # Subtract drag against water from data set 80 #PyPlot.plot(data[1,:].*cv, (data[2,:] - mean(data[2,1:100]))./1e3, "C1-", 81 # label="Two-floe experiment") 82 PyPlot.plot(dist, N_parameterization./1e3, "C2-", label="Plan-view parameterization") 83 PyPlot.xlabel("Compressive distance [m]") 84 PyPlot.ylabel("Compressive stress [kPa]") 85 #PyPlot.legend() 86 PyPlot.tight_layout() 87 PyPlot.savefig("ridging_parameterization2.png") 88 PyPlot.savefig("ridging_parameterization2.pdf")