Granular.jl

Julia package for granular dynamics simulation
git clone git://src.adamsgaard.dk/Granular.jl
Log | Files | Refs | README | LICENSE

commit 3a15d9e39ecaeda0fe5433300bca2290d9af51a9
parent e5fe4e54a81b423af217a9eaa8ddd442a6f3ba4a
Author: Anders Damsgaard <andersd@riseup.net>
Date:   Fri, 22 Sep 2017 13:23:55 -0400

begin implementing poisson-disk packing

Diffstat:
Msrc/grid.jl | 72+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-
Msrc/packing.jl | 102+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Mtest/runtests.jl | 1+
3 files changed, 174 insertions(+), 1 deletion(-)

diff --git a/src/grid.jl b/src/grid.jl @@ -326,11 +326,81 @@ function isPointInCell(grid::Any, i::Int, j::Int, point::Vector{Float64}, end end +export isPointInGrid +""" +Check if a 2d point is contained inside the grid. The function uses either an +area-based approach (`method = "Area"`), or a conformal mapping approach +(`method = "Conformal"`). The area-based approach is more robust. This +function returns `true` or `false`. +""" +function isPointInGrid(grid::Any, point::Vector{Float64}, + sw::Vector{Float64} = Vector{Float64}(2), + se::Vector{Float64} = Vector{Float64}(2), + ne::Vector{Float64} = Vector{Float64}(2), + nw::Vector{Float64} = Vector{Float64}(2); + method::String="Conformal") + + #sw, se, ne, nw = getCellCornerCoordinates(grid.xq, grid.yq, i, j) + nx, ny = size(grid.xq) + @views sw[1] = grid.xq[ 1, 1] + @views sw[2] = grid.yq[ 1, 1] + @views se[1] = grid.xq[ nx, 1] + @views se[2] = grid.yq[ nx, 1] + @views ne[1] = grid.xq[ nx, ny] + @views ne[2] = grid.yq[ nx, ny] + @views nw[1] = grid.xq[ 1, ny] + @views nw[2] = grid.yq[ 1, ny] + + if method == "Area" + if areaOfQuadrilateral(sw, se, ne, nw) ≈ + areaOfTriangle(point, sw, se) + + areaOfTriangle(point, se, ne) + + areaOfTriangle(point, ne, nw) + + areaOfTriangle(point, nw, sw) + return true + else + return false + end + + elseif method == "Conformal" + x_tilde, y_tilde = conformalQuadrilateralCoordinates(sw, se, ne, nw, + point) + if x_tilde >= 0. && x_tilde <= 1. && y_tilde >= 0. && y_tilde <= 1. + return true + else + return false + end + else + error("method not understood") + end +end + +export getGridCornerCoordinates +""" + getGridCornerCoordinates(xq, yq) + +Returns grid corner coordinates in the following order (south-west corner, +south-east corner, north-east corner, north-west corner). + +# Arguments +* `xq::Array{Float64, 2}`: nominal longitude of q-points [degrees_E] +* `yq::Array{Float64, 2}`: nominal latitude of q-points [degrees_N] +""" +@inline function getGridCornerCoordinates(xq::Array{Float64, 2}, + yq::Array{Float64, 2}) + nx, ny = size(xq) + @inbounds return Float64[xq[ 1, 1], yq[ 1, 1]], + Float64[xq[ nx, 1], yq[ nx, 1]], + Float64[xq[ nx, ny], yq[ nx, ny]], + Float64[xq[ 1, ny], yq[ 1, ny]] +end + + export getCellCornerCoordinates """ getCellCornerCoordinates(xq, yq, i, j) -Returns grid corner coordinates in the following order (south-west corner, +Returns grid-cell corner coordinates in the following order (south-west corner, south-east corner, north-east corner, north-west corner). # Arguments diff --git a/src/packing.jl b/src/packing.jl @@ -0,0 +1,102 @@ +## Functions for creating ice-floe packings +""" +Return random point in spherical annulus between `(r_i + r_j)` and `2.*(r_i + +r_j)` around `x_i`. Note: there is slightly higher point density towards (r_i + +r_j). +""" +function generateNeighboringPoint(x_i::Vector, r_i::Real, r_j::Real, + max_padding_factor::Real) + + R = rand()*(r_i + r_j)*max_padding_factor + 2.*(r_i + r_j) + T = rand()*2.*pi + return [x_i[1] + R*sin(T), x_i[2] + R*cos(T)] +end + +export poissonDiscSampling +""" +Generate disc packing in 2D using Poisson disc sampling with O(N) complexity, as +described by [Robert Bridson (2007)](http://www.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf). + +# Arguments +* `simulation::Simulation`: simulation object where ice floes are inserted. +* `radius_max::Real`: largest ice-floe radius to use. +* `radius_min::Real`: smallest ice-floe radius to use. +* `sample_limit::Integer=30`: number of points to sample around each ice floe + before giving up. +* `max_padding_factor::Real=2.`: this factor scales the padding to use during ice + floe generation in numbers of grain diameters. +* `verbose::Bool=true`: show diagnostic information to stdout. + +""" +function poissonDiscSampling(simulation::Simulation; + ;radius_max::Real=.1, + radius_min::Real=.1, + sample_limit::Integer=30, + max_padding_factor::Real=2., + thickness::Real=1., + verbose::Bool=true) + + active_list = Int[] # list of points to originate search from + + # Step 0: Use existing `grid` (ocean or atmosphere) for contact-search grid + if typeof(simulation.ocean.input_file) != Bool + grid = simulation.ocean + elseif typeof(simulation.atmosphere.input_file) != Bool + grid = simulation.atmosphere + else + error("poissonDiscSampling requires an ocean or atmosphere grid") + end + # save grid boundaries + sw, se, ne, nw = getGridCornerCoordinates(grid.xq, grid.yq) + width_x = se[1] - sw[1] # assume regular grid + width_y = nw[2] - sw[2] # assume regular grid + + # Step 1: If grid is empty: select random initial sample and save its index + # to the background grid. Else: Make all ice floes active for search + if isempty(simulation.ice_floes) + r = rand()*(radius_max - radius_min) + radius_min + x0 = rand(2).*[width_x, width_y] + sw + addIceFloeCylindrical!(simulation, x0, r, thickness) + sortIceFloesInGrid!(simulation, grid) + push!(active_list, 1) + else + for i=1:length(simulation.ice_floes) + push!(active_list, i) + end + end + + # Step 2: While the active list is not empty, choose a random index `i` from + # it. Generate up to `k` points chosen uniformly from the spherical annulus + # between radius `2*(r_i+r_j)` and `max_padding_factor*2*(r_i+r_j)` around + # `x_i`. + i = 0; j = 0; x_i = zeros(2); x_j = zeros(2); r_i = 0.; r_j = 0. + while !isempty(active_list) + + i = rand(1:length(active_list)) + deleteat!(active_list, i) + + x_i = simulation.ice_floes[i].lin_pos + r_i = simulation.ice_floes[i].contact_radius + r_j = rand()*(radius_max - radius_min) + radius_min + + for j=1:sample_limit + + x_j = generateNeighboringPoint(x_i, r_i, r_j, max_padding_factor) + if !(isPointInGrid(grid, x_j)) + continue + end + + # if it doesn't collide, add it to the active list + if !checkCollisions(grid, x_j, dx, position_list, radius_list) + push!(position_list, x_j) + push!(radius_list, r_j) + push!(active_list, length(radius_list)) + end + end + println("Active points: $(length(active_list))") + end + if verbose + info("Generated $(length(radius_list)) points") + end + return position_list, radius_list +end diff --git a/test/runtests.jl b/test/runtests.jl @@ -2,6 +2,7 @@ import SeaIce using Base.Test include("icefloe.jl") +include("packing.jl") include("util.jl") include("temporal.jl") include("contact-search-and-geometry.jl")