granular-channel-hydro

Subglacial hydrology model for sedimentary channels
git clone git://src.adamsgaard.dk/granular-channel-hydro
Log | Files | Refs | README | LICENSE

commit 26bc00c665916c00d8fc195170f6df2062d77332
parent 8119c0ae2e91d175f51c319d32a10abc108ebcd3
Author: Anders Damsgaard Christensen <adc@geo.au.dk>
Date:   Thu,  2 Feb 2017 12:31:15 -0800

try different deposition laws, d_dot > e_dot

Diffstat:
M1d-channel.py | 67++++++++++++++++++++++++++++++++++++++++++++++++++++++++-----------
1 file changed, 56 insertions(+), 11 deletions(-)

diff --git a/1d-channel.py b/1d-channel.py @@ -28,6 +28,7 @@ tol_Q = 1e-3 # Tolerance criteria for the normalized max. residual for Q tol_P_c = 1e-3 # Tolerance criteria for the normalized max. residual for P_c max_iter = 1e2*Ns # Maximum number of solver iterations before failure output_convergence = False # Display convergence statistics during run +safety = 0.1 # Safety factor ]0;1] for adaptive timestepping # Physical parameters rho_w = 1000. # Water density [kg/m^3] @@ -38,20 +39,22 @@ theta = 30. # Angle of internal friction in sediment [deg] # Water source term [m/s] #m_dot = 7.93e-11 -#m_dot = 4.5e-8 -m_dot = 5.79e-5 +m_dot = 4.5e-7 +#m_dot = 5.79e-5 # Walder and Fowler 1994 sediment transport parameters K_e = 0.1 # Erosion constant [-], disabled when 0.0 -K_d = 6.0 # Deposition constant [-], disabled when 0.0 +#K_d = 6.0 # Deposition constant [-], disabled when 0.0 +K_d = 1e-1 # Deposition constant [-], disabled when 0.0 +alpha = 2e5 # Geometric correction factor (Carter et al 2017) #D50 = 1e-3 # Median grain size [m] #tau_c = 0.5*g*(rho_s - rho_i)*D50 # Critical shear stress for transport d15 = 1e-3 # Characteristic grain size [m] -tau_c = 0.025*d15*g*(rho_s - rho_i) # Critical shear stress (Carter 2016) +tau_c = 0.025*d15*g*(rho_s - rho_i) # Critical shear stress (Carter 2017) #tau_c = 0. mu_w = 1.787e-3 # Water viscosity [Pa*s] froude = 0.1 # Friction factor [-] -v_s = d15**2.*g*2.*(rho_s - rho_i)/(9.*mu_w) # Settling velocity (Carter 2016) +v_s = d15**2.*g*2.*(rho_s - rho_i)/(9.*mu_w) # Settling velocity (Carter 2017) # Hewitt 2011 channel flux parameters manning = 0.1 # Manning roughness coefficient [m^{-1/3} s] @@ -91,7 +94,7 @@ N_c = numpy.zeros_like(S) # Effective pressure in channel segments [Pa] P_c = numpy.zeros_like(S) # Water pressure in channel segments [Pa] e_dot = numpy.zeros_like(S) # Sediment erosion rate in channel segments [m/s] d_dot = numpy.zeros_like(S) # Sediment deposition rate in chan. segments [m/s] -c_bar = numpy.zeros_like(S) # Vertically integrated sediment content [m] +c_bar = numpy.zeros_like(S) # Vertically integrated sediment concentration [-] tau = numpy.zeros_like(S) # Avg. shear stress from current [Pa] porosity = numpy.ones_like(S)*0.3 # Sediment porosity [-] res = numpy.zeros_like(S) # Solution residual during solver iterations @@ -118,25 +121,64 @@ def channel_shear_stress(Q, S): def channel_erosion_rate(tau): # Parker 1979, Walder and Fowler 1994 - return K_e*v_s*(tau - tau_c).clip(0.)/(g*(rho_s - rho_w)*d15) + #return K_e*v_s*(tau - tau_c).clip(min=0.)/(g*(rho_s - rho_w)*d15) + # Carter et al 2017 + return K_e*v_s/alpha*(tau - tau_c).clip(min=0.)/(g*(rho_s - rho_w)*d15) def channel_deposition_rate_kernel(tau, c_bar, ix): # Parker 1979, Walder and Fowler 1994 - return K_d*v_s*c_bar[ix]*(g*(rho_s - rho_w)*d15/tau[ix])**0.5 + #result = K_d*v_s*c_bar[ix]*(g*(rho_s - rho_w)*d15/tau[ix])**0.5 + + # Carter et al. 2017 + result = K_d*v_s/alpha*c_bar[ix]*(g*(rho_s - rho_w)*d15/tau[ix])**0.5 + + print('tau[{}] = {}'.format(ix, tau[ix])) + print('c_bar[{}] = {}'.format(ix, c_bar[ix])) + print('e_dot[{}] = {}'.format(ix, e_dot[ix])) + print('d_dot[{}] = {}'.format(ix, result)) + print('') + + return result + +def channel_deposition_rate_kernel_ng(c_bar, ix): + # Ng 2000 + h = W[ix]/2.*numpy.tan(numpy.deg2rad(theta)) + epsilon = numpy.sqrt((psi[ix] - (P_c[ix] - P_c[ix - 1])/ds[ix])\ + /(rho_w*froude))*h**(3./2.) + return v_s/epsilon*c_bar[ix] def channel_deposition_rate(tau, c_bar, d_dot, Ns): # Parker 1979, Walder and Fowler 1994 # Find deposition rate from upstream to downstream, margin at is=0 + + print("\n## Before loop:") + print(c_bar) + print(d_dot) + print('') + + # No sediment deposition at upstream end c_bar[0] = 0. d_dot[0] = 0. for ix in numpy.arange(1, Ns - 1): # Net erosion in upstream cell - c_bar[ix] += numpy.maximum((e_dot[ix - 1] - d_dot[ix - 1])*dt, 0.) + #c_bar[ix] = numpy.maximum((e_dot[ix-1] - d_dot[ix-1])*dt*ds[ix-1], 0.) + c_bar[ix] = numpy.maximum( + W[ix - 1]*ds[ix - 1]*rho_s/rho_w* + (e_dot[ix - 1] - d_dot[ix - 1])/Q[ix - 1] + , 0.) + + #d_dot[ix] = channel_deposition_rate_kernel(tau, c_bar, ix) + d_dot[ix] = channel_deposition_rate_kernel_ng(c_bar, ix) + + + print("\n## After loop:") + print(c_bar) + print(d_dot) + print('') - d_dot[ix] = channel_deposition_rate_kernel(tau, c_bar, ix) return d_dot, c_bar @@ -260,7 +302,6 @@ def plot_state(step, time): def find_new_timestep(ds, Q, S): # Determine the timestep using the Courant-Friedrichs-Lewy condition - safety = 0.2 dt = safety*numpy.minimum(60.*60.*24., numpy.min(numpy.abs(ds/(Q*S)))) if dt < 1.0: @@ -299,6 +340,8 @@ plot_state(-1, 0.0) time = 0.; step = 0 while time <= t_end: + #print('@ @ @ step ' + str(step)) + dt = find_new_timestep(ds, Q, S) print_status_to_stdout(time, dt) @@ -333,8 +376,10 @@ while time <= t_end: plot_state(step, time) + #import ipdb; ipdb.set_trace() if step > 0: break + # Update time time += dt step += 1