granular-channel-hydro

Subglacial hydrology model for sedimentary channels
git clone git://src.adamsgaard.dk/granular-channel-hydro
Log | Files | Refs | README | LICENSE

commit ed3e36d656e883a7527ac866dad7e6d1ebffcf57
parent 25bddd0fd670ac412295cf87cdd4ed1759875e12
Author: Anders Damsgaard <andersd@riseup.net>
Date:   Mon, 13 Mar 2017 15:59:48 -0700

solve for N_c

Diffstat:
M1d-channel.py | 125+++++++++++++++++++++++++++++++++----------------------------------------------
1 file changed, 52 insertions(+), 73 deletions(-)

diff --git a/1d-channel.py b/1d-channel.py @@ -21,43 +21,43 @@ import sys # # Model parameters -Ns = 25 # Number of nodes [-] -# Ls = 100e3 # Model length [m] -Ls = 10e3 # Model length [m] -# Ls = 1e3 # Model length [m] -total_days = 60. # Total simulation time [d] +Ns = 25 # Number of nodes [-] +Ls = 10e3 # Model length [m] +total_days = 60. # Total simulation time [d] t_end = 24.*60.*60.*total_days # Total simulation time [s] -tol_Q = 1e-3 # Tolerance criteria for the normalized max. residual for Q -tol_P_c = 1e-3 # Tolerance criteria for the norm. max. residual for P_c -max_iter = 1e2*Ns # Maximum number of solver iterations before failure -print_output_convergence = False # Display convergence statistics during run +tol_Q = 1e-3 # Tolerance criteria for the norm. max. residual for Q +tol_N_c = 1e-3 # Tolerance criteria for the norm. max. residual for N_c +max_iter = 1e2*Ns # Maximum number of solver iterations before failure +print_output_convergence = False # Display convergence in nested loops +print_output_convergence_main = True # Display convergence in main loop safety = 0.01 # Safety factor ]0;1] for adaptive timestepping -# plot_interval = 20 # Time steps between plots -plot_interval = 1 # Time steps between plots +plot_interval = 20 # Time steps between plots +speedup_factor = 1. # Speed up channel growth to reach steady state faster # Physical parameters -rho_w = 1000. # Water density [kg/m^3] -rho_i = 910. # Ice density [kg/m^3] -rho_s = 2600. # Sediment density [kg/m^3] -g = 9.8 # Gravitational acceleration [m/s^2] -theta = 30. # Angle of internal friction in sediment [deg] +rho_w = 1000. # Water density [kg/m^3] +rho_i = 910. # Ice density [kg/m^3] +rho_s = 2600. # Sediment density [kg/m^3] +g = 9.8 # Gravitational acceleration [m/s^2] +theta = 30. # Angle of internal friction in sediment [deg] sand_fraction = 0.5 # Initial volumetric fraction of sand relative to gravel -D_g = 1. # Mean grain size in gravel fraction (> 2 mm) -D_s = 0.01 # Mean grain size in sand fraction (<= 2 mm) +D_g = 5e-3 # Mean grain size in gravel fraction (> 2 mm) [m] +D_s = 5e-4 # Mean grain size in sand fraction (<= 2 mm) [m] +#D_g = 1 +#D_g = 0.1 # Boundary conditions P_terminus = 0. # Water pressure at terminus [Pa] -m_dot = 2.0e-7 # Water source term [m/s] -Q_upstream = 1e-5 # Water influx, upstream end (must be larger than 0) [m^3/s] - +m_dot = 1e-6 # Water source term [m/s] +Q_upstream = 1e-5 # Water influx upstream (must be larger than 0) [m^3/s] # Channel hydraulic properties -manning = 0.1 # Manning roughness coefficient [m^{-1/3} s] +manning = 0.1 # Manning roughness coefficient [m^{-1/3} s] friction_factor = 0.1 # Darcy-Weisbach friction factor [-] # Channel growth-limit parameters -c_1 = -0.118 # [m/kPa] -c_2 = 4.60 # [m] +c_1 = -0.118 # [m/kPa] +c_2 = 4.60 # [m] # Minimum channel size [m^2], must be bigger than 0 S_min = 1e-2 @@ -70,16 +70,15 @@ S_min = 1e-2 s = numpy.linspace(0., Ls, Ns) ds = s[1:] - s[:-1] -# Ice thickness and bed topography -H = 6.*(numpy.sqrt(Ls - s + 5e3) - numpy.sqrt(5e3)) + 1.0 # glacier +# Ice thickness [m] +H = 6.*(numpy.sqrt(Ls - s + 5e3) - numpy.sqrt(5e3)) + 1.0 # slope = 0.1 # Surface slope [%] # H = 1000. + -slope/100.*s +# Bed topography [m] b = numpy.zeros_like(H) -N = H*0.1*rho_i*g # Initial effective stress [Pa] -#p_w = rho_i*g*H - N # Initial guess of water pressure [Pa] -#hydro_pot = rho_w*g*b + p_w # Initial guess of hydraulic potential [Pa] +N = H*0.1*rho_i*g # Initial effective stress [Pa] # Initialize arrays for channel segments between nodes S = numpy.ones(len(s) - 1)*S_min # Cross-sect. area of channel segments[m^2] @@ -149,8 +148,6 @@ def channel_sediment_flux_sand(tau, W, f_s, D_s): (1.0 - 0.846*numpy.sqrt(ref_shear_stress/shields_stress)) )**4.5 - # The above relation gives 'nan' values for low values of tau - return Q_c @@ -239,40 +236,33 @@ def flux_solver(m_dot, ds): def pressure_solver(psi, f, Q, S): # Iteratively find new water pressures - # dP_c/ds = psi - f*rho_w*g*Q^2/S^{8/3} (Kingslake and Ng 2013) + # dN_c/ds = f*rho_w*g*Q^2/S^{8/3} - psi (Kingslake and Ng 2013) it = 0 max_res = 1e9 # arbitrary large value - while max_res > tol_P_c or it < Ns: + while max_res > tol_N_c or it < Ns: - P_c_old = P_c.copy() - - # P_downstream = P_upstream + dP - # P_c[1:] = P_c[:-1] \ - # + psi[:-1]*ds[:-1] \ - # - f[:-1]*rho_w*g*Q[:-1]**2./(S[:-1]**(8./3.))*ds[:-1] \ + N_c_old = N_c.copy() # Dirichlet BC (fixed pressure) at terminus - P_c[-1] = P_terminus + N_c[-1] = rho_i*g*H_c[-1] - P_terminus - # P_upstream = P_downstream - dP - P_c[:-1] = P_c[1:] \ - - psi[:-1]*ds[:-1] \ - + f[:-1]*rho_w*g*Q[:-1]**2./(S[:-1]**(8./3.))*ds[:-1] - # + psi[:-1]*ds[:-1] \ - # - f[:-1]*rho_w*g*Q[:-1]**2./(S[:-1]**(8./3.))*ds[:-1] + N_c[:-1] = N_c[1:] \ + + psi[:-1]*ds[:-1] \ + - f[:-1]*rho_w*g*Q[:-1]*numpy.abs(Q[:-1]) \ + /(S[:-1]**(8./3.))*ds[:-1] - max_res = numpy.max(numpy.abs((P_c - P_c_old)/(P_c + 1e-16))) + max_res = numpy.max(numpy.abs((N_c - N_c_old)/(N_c + 1e-16))) if print_output_convergence: print('it = {}: max_res = {}'.format(it, max_res)) if it >= max_iter: raise Exception('t = {}, step = {}:'.format(time, step) + - 'Iterative solution not found for P_c') + 'Iterative solution not found for N_c') it += 1 - return P_c + return N_c def plot_state(step, time, S_, S_max_, title=True): @@ -281,8 +271,6 @@ def plot_state(step, time, S_, S_max_, title=True): fig.set_size_inches(3.3*1.1, 3.3*1.1*1.5) ax_Pa = plt.subplot(3, 1, 1) # axis with Pascals as y-axis unit - # ax_Pa.plot(s_c/1000., P_c/1000., '--r', label='$P_c$') - # ax_Pa.plot(s/1000., N/1000., '--r', label='$N$') ax_Pa.plot(s_c/1000., N_c/1e6, '-k', label='$N$') ax_Pa.plot(s_c/1000., H_c*rho_i*g/1e6, '--r', label='$P_i$') ax_Pa.plot(s_c/1000., P_c/1e6, ':y', label='$P_c$') @@ -294,7 +282,6 @@ def plot_state(step, time, S_, S_max_, title=True): plt.title('Day: {:.3}'.format(time/(60.*60.*24.))) ax_Pa.legend(loc=2) ax_m3s.legend(loc=4) - # ax_Pa.set_ylabel('[kPa]') ax_Pa.set_ylabel('[MPa]') ax_m3s.set_ylabel('[m$^3$/s]') @@ -308,12 +295,8 @@ def plot_state(step, time, S_, S_max_, title=True): ax_m2 = plt.subplot(3, 1, 3, sharex=ax_Pa) ax_m2.plot(s_c/1000., S_, '-k', label='$S$') ax_m2.plot(s_c/1000., S_max_, '--', color='#666666', label='$S_{max}$') - # ax_m.semilogy(s_c/1000., S, '-k', label='$S$') - # ax_m.semilogy(s_c/1000., S_max, '--k', label='$S_{max}$') ax_m2s = ax_m2.twinx() - # ax_ms.plot(s_c/1000., e_dot, '--r', label='$\dot{e}$') - # ax_ms.plot(s_c/1000., d_dot, ':b', label='$\dot{d}$') ax_m2s.plot(s_c/1000., dSdt, ':', label='$dS/dt$') ax_m2.legend(loc=2) @@ -345,17 +328,15 @@ def find_new_timestep(ds, Q, S): return dt -def print_status_to_stdout(time, dt): - sys.stdout.write('\rt = {:.2} s or {:.4} d, dt = {:.2} s ' +def print_status_to_stdout(step, time, dt): + sys.stdout.write('\rstep = {}, '.format(step) + + 't = {:.2} s or {:.4} d, dt = {:.2} s ' .format(time, time/(60.*60.*24.), dt)) sys.stdout.flush() s_c = avg_midpoint(s) # Channel section midpoint coordinates [m] H_c = avg_midpoint(H) -# Find water flux -Q = flux_solver(m_dot, ds) - # Water-pressure gradient from geometry [Pa/m] psi = -rho_i*g*gradient(H, s) - (rho_w - rho_i)*g*gradient(b, s) @@ -373,7 +354,7 @@ while time <= t_end: dt = find_new_timestep(ds, Q, S) # Display current simulation status - print_status_to_stdout(time, dt) + print_status_to_stdout(step, time, dt) it = 0 @@ -389,6 +370,10 @@ while time <= t_end: S_prev_it = S.copy() + # Find new water fluxes consistent with mass conservation and local + # meltwater production (m_dot) + Q = flux_solver(m_dot, ds) + # Find average shear stress from water flux for each channel segment tau = channel_shear_stress(Q, S) @@ -400,29 +385,26 @@ while time <= t_end: # Determine change in channel size for each channel segment. # Use backward differences and assume dS/dt=0 in first segment. - dSdt[1:] = channel_growth_rate_sedflux(Q_t, porosity, s_c) + #dSdt[1:] = channel_growth_rate_sedflux(Q_t, porosity, s_c) + #dSdt *= speedup_factor # Update channel cross-sectional area and width according to growth # rate and size limit for each channel segment S, W, S_max, dSdt = \ update_channel_size_with_limit(S, S_old, dSdt, dt, N_c) - # Find new water fluxes consistent with mass conservation and local - # meltwater production (m_dot) - Q = flux_solver(m_dot, ds) - # Find hydraulic roughness f = channel_hydraulic_roughness(manning, S, W, theta) # Find new water pressures consistent with the flow law - P_c = pressure_solver(psi, f, Q, S) + N_c = pressure_solver(psi, f, Q, S) # Find new effective pressure in channel segments - N_c = rho_i*g*H_c - P_c + P_c = rho_i*g*H_c - N_c # Find new maximum normalized residual value max_res = numpy.max(numpy.abs((S - S_prev_it)/(S + 1e-16))) - if print_output_convergence: + if print_output_convergence_main: print('it = {}: max_res = {}'.format(it, max_res)) # import ipdb; ipdb.set_trace() @@ -435,9 +417,6 @@ while time <= t_end: if step % plot_interval == 0: plot_state(step, time, S, S_max) - # import ipdb; ipdb.set_trace() - # if step > 0: break - # Update time time += dt step += 1