manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit 2a0c7eeace52e33c3463c0704f57ea9125b71ef7
parent 62bbbfc299f971f9a0256279820b216b676870ab
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Wed,  9 Oct 2019 17:15:04 +0200

Update results text

Diffstat:
Mcontinuum-granular-manuscript1.tex | 6+++++-
1 file changed, 5 insertions(+), 1 deletion(-)

diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -437,7 +437,6 @@ The depth of maximum shear-strain rate follows the minimum in effective normal s It is worth noting that the minima in $\sigma'_\text{n}$ need a width comparable to the shear zone thickness, due to granular non-locality. Otherwise the material rather deforms in a zone where the depth integral of effective normal stress is lower. - \begin{figure*}[htbp] \begin{center} \includegraphics[width=15.0cm]{experiments/fig6.pdf} @@ -449,6 +448,11 @@ Otherwise the material rather deforms in a zone where the depth integral of effe \end{center} \end{figure*} +Figure~\ref{fig:stick_slip_depth} shows a time-stacked series of simulation state with depth. +The experimental setup is rate-controlled and identical to Fig.~\ref{fig:stick_slip}b and~\ref{fig:hysteresis}b. +The water pressure perturbations decay exponentially with depth with a phase shift \citep[p.\ 271 in][]{Turcotte2002}. +Deep deformation occurs when top water pressure is at a minimum, and the effective normal stress is less at depth than at the top. + \begin{figure}[htbp] \begin{center} \includegraphics[width=0.49\textwidth]{experiments/pulse-triangle-fig4b.pdf}