manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit 2f01a826e703dc0251dca1eddce1d3aeac8580cb
parent 5e9c0117e6b35d69e338ed89c857d718ef7fc19c
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Wed, 26 Jun 2019 15:29:00 +0200

Fix references

Diffstat:
Mcontinuum-granular-manuscript1.tex | 24+++++++++++++-----------
1 file changed, 13 insertions(+), 11 deletions(-)

diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -23,7 +23,7 @@ %% Links, colors, citations \usepackage{color} -\usepackage{hyperref}https://www.overleaf.com/6436856223rspxdsvynfyk +\usepackage{hyperref} \usepackage[natbib=true, style=authoryear, bibstyle=authoryear-comp, maxbibnames=10, maxcitenames=2, backend=bibtex8]{biblatex} \bibliography{BIBnew.bib} @@ -61,7 +61,7 @@ In our model, the sediment deforms as a highly nonlinear Bingham material with y We assume that the elasticity is negligible and set the total shear rate $\dot{\gamma}$ to consist of a plastic contribution $\dot{\gamma}^\text{p}$: \begin{equation} \dot{\gamma} \approx \dot{\gamma}^\text{p} = g(\mu_\text{c}, \sigma_\text{n}') \mu, - \label{eq:shear-strain-rate} + \label{eq:shear_strain_rate} \end{equation} where $\mu = \tau/\sigma_\text{n}'$ is the dimensionless ratio between shear stress ($\tau$ [Pa]) and effective normal stress ($\sigma_\text{n}' = \sigma_\text{n} - p_f$ [Pa]). Water pressure is $p_\text{f}$ [Pa] and $g$ [s$^{-1}$] is the granular fluidity. The fluidity consists of local and non-local components. @@ -94,7 +94,7 @@ We prescribe the transient evolution of pore-fluid pressure ($p_\text{f}$) by Da \end{equation} where $\mu_\text{f}$ denotes dynamic fluid viscosity [Pa s], $\beta_\text{f}$ is adiabatic fluid compressibility [Pa$^{-1}$], and $k$ is intrinsic permeability [m$^2$]. The sediment is assumed to be in the critical state throughout the domain, as in the original formulation by \citet{Henann2013}. -The fluid pressure is used to determine the effective normal stress used in the granular flow calculations (Eq.~\ref{eq:shear-strain-rate} and~\ref{eq:g_local}). +The fluid pressure is used to determine the effective normal stress used in the granular flow calculations (Eq.~\ref{eq:shear_strain_rate} and~\ref{eq:g_local}). \subsection{Numerical solution procedure}% \label{sub:numerical_solution_procedure} @@ -160,7 +160,7 @@ The above relation implies that the amplitude in water-pressure forcing does not \begin{figure}[htbp] \begin{center} \includegraphics[width=7.5cm]{experiments/fig1.pdf} - \caption{\label{fig:rate-dependence}% + \caption{\label{fig:rate_dependence}% Influence of rate-dependence factor $b$ in Eq.~\ref{eq:g_local} on post-failure friction. Plot limits equal to \citet{Iverson2010}. The effective normal stress is held constant at $\sigma_\text{n}' = 100$ kPa. @@ -171,7 +171,7 @@ The above relation implies that the amplitude in water-pressure forcing does not \begin{figure}[htbp] \begin{center} \includegraphics[width=7.5cm]{experiments/fig2.pdf} - \caption{\label{fig:stick-slip}% + \caption{\label{fig:stick_slip}% Stick-slip dynamics during sinusoidal water-pressure forcing from the top. Stress and shear velocity are measured at the top of the sediment bed. } @@ -181,8 +181,8 @@ The above relation implies that the amplitude in water-pressure forcing does not \begin{figure}[htbp] \begin{center} \includegraphics[width=15.0cm]{experiments/fig3.pdf} - \caption{\label{fig:stick-slip-depth}% - Pore-pressure diffusion and strain distribution with depth with a sinusoidal water-pressure forcing from the top (Fig.~\ref{fig:stick-slip}). + \caption{\label{fig:stick_slip_depth}% + Pore-pressure diffusion and strain distribution with depth with a sinusoidal water-pressure forcing from the top (Fig.~\ref{fig:stick_slip}). The forcing has a daily periodocity, and plot lines are one hour in simulation time apart. } \end{center} @@ -191,8 +191,8 @@ The above relation implies that the amplitude in water-pressure forcing does not \begin{figure}[htbp] \begin{center} \includegraphics[width=15.0cm]{experiments/fig4.pdf} - \caption{\label{fig:stick-slip-depth}% - Pore-pressure diffusion and normalized strain distribution with depth with a sinusoidal water-pressure forcing from the top (Fig.~\ref{fig:stick-slip}). + \caption{\label{fig:stick_slip_depth_normalized}% + Pore-pressure diffusion and normalized strain distribution with depth with a sinusoidal water-pressure forcing from the top (Fig.~\ref{fig:stick_slip}). The forcing has a daily periodocity, and plot lines are one hour in simulation time apart. } \end{center} @@ -200,8 +200,10 @@ The above relation implies that the amplitude in water-pressure forcing does not \begin{figure}[htbp] \begin{center} - \includegraphics[width=5.0cm]{experiments/fig5.pdf} - \caption{\label{fig:skin-depth}% + \includegraphics[width=7.5cm]{experiments/fig5.pdf} + \caption{\label{fig:skin_depth}% + Skin depth of pore-pressure fluctuations (Eq.~\ref{eq:skin_depth}) with forcing frequencies ranging from yearly to hourly. + The permeability range spans commonly encountered tills \citep{Schwartz2003}. } \end{center} \end{figure}