manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit 3ee98695a7355a63057ffefbc0065d1a9dfdec6a
parent 66f09cf042d4bd6f25a18b1877f58cae9f9ace1d
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Mon, 24 Jun 2019 11:27:36 +0200

Add csquotes, begin to weed out text

Diffstat:
Mcontinuum-granular-manuscript1.tex | 80++++++++++---------------------------------------------------------------------
1 file changed, 10 insertions(+), 70 deletions(-)

diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -12,6 +12,7 @@ \usepackage[charter]{mathdesign} % Math font \usepackage[scale=0.9]{sourcecodepro} % Monospaced fontenc \usepackage[lf]{FiraSans} % Sans-serif font +\usepackage{csquotes} %% Graphics \usepackage{graphicx} @@ -28,7 +29,7 @@ maxcitenames=2, backend=bibtex8]{biblatex} \bibliography{BIBnew.bib} %%% TITLE -\title{A new continuum model for subglacial till based on granular rheology} +\title{Deep slip in subglacial tills from water-pressure memory} \author{Anders Damsgaard} \date{Latest revision: \today} @@ -48,36 +49,18 @@ We generalize these previous models to a water-saturated granular flow, by compa \end{abstract} +\section{Introduction}% +\label{sec:introduction} -\section{Governing equations}% -\label{sec:governing_equations} -\subsection{Mass conservation}% -\label{subsec:mass_conservation} -The model consists of a granular sediment phase with pores fully saturated by a fluid phase. -The porosity is denoted $\phi$ [-], and the sediment material density is $\rho_\text{s}$ [kg/m$^3$]. -The equation for sediment phase mass conservation over time ($t$) is defined as: -\begin{equation} - \frac{\partial[(1-\phi)\rho_\text{s}]}{\partial t} + - \nabla \cdot [ (1-\phi)\rho_\text{s} \boldsymbol{v}_\text{s}] - = 0, -\label{eq:mass_cons_solid} -\end{equation} -where $\boldsymbol{v}_\text{s}^{}$ denotes sediment flow velocity. -The fluid phase continuity equation similarly contains fluid density ($\rho_\text{f}$) and flow velocity ($\boldsymbol{v}_\text{f}^{}$): -\begin{equation} - \frac{\partial[\phi\rho_\text{f}]}{\partial t} + - \nabla \cdot [\phi\rho_\text{f} \boldsymbol{v}_\text{f}] - = 0 -\label{eq:mass_cons_fluid} -\end{equation} +\section{Methods}% +\label{sec:methods} \subsection{Granular flow}% \label{sub:granular_flow} -The granular material deforms as a highly nonlinear Bingham material with yield beyond the Mohr-Coulomb failure limit for a cohesionless material. +In our model, the sediment deforms as a highly nonlinear Bingham material with yield beyond the Mohr-Coulomb failure limit for a cohesionless material. We expand a steady-state continuum model for granular flow by \citet{Henann2013} with a coupling to pore water, including transient dynamics during shear zone formation and vanishment. -The total shear rate $\dot{\gamma}$ consists of elastic ($\dot{\gamma}^\text{e}$) and plastic ($\dot{\gamma}^\text{p}$) contributions. -We assume that the elastic component is negligible: +We assume that the elasticity is negligible and set the total shear rate $\dot{\gamma}$ to consist of a plastic contribution $\dot{\gamma}^\text{p}$: \begin{equation} \dot{\gamma} \approx \dot{\gamma}^\text{p} = g(\mu_\text{c}, \sigma_\text{n}') \mu, \label{eq:shear-strain-rate} @@ -104,63 +87,20 @@ where \label{eq:cooperativity} \end{equation} -\subsubsection{Transient dynamics}% -\label{ssub:transient_dynamics} - -The porosity in loose granular materials tends towards a critical state porosity ($\phi_\text{c}$) during early shear strain. -If the porosity initially is lower than the critical-state value, the material dilates to accommodate relative movement of grains in the shear zone. -Similarly, the porosity decreases during shear-driven compaction if the material is initially underconsolidated. -We use the empirical relationship from \citet{Pouliquen2006} to describe critical state porosity $\phi_\text{c}$ under the assumption that the grains are rigid: -\begin{equation} - \phi_\text{c}(I) = \phi_\text{min} + (\phi_\text{max} - \phi_\text{min})I, - \label{eq:phi_c} -\end{equation} -where $\phi_\text{min}$ and $\phi_\text{max}$ are the smallest observable porosity and the observed or inferred porosity at $I=1$, respectively. -$I$ is the inertia number \citep{GDR-MiDi2004}: -\begin{equation} - I = \frac{\dot{\gamma}d}{\sqrt{\sigma_\text{n}' / \rho_\text{s}}} - \label{eq:I} -\end{equation} -We describe the volumetric and shear stress dynamics before the critical state in a set of transient equations \citep[e.g.][]{Roux1998, Pailha2009}: -\begin{equation} - \frac{1}{\phi} \frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{\partial v_{\text{s},z}}{\partial z} = \tan \psi \dot{\gamma}, - \label{eq:dilation} -\end{equation} -\begin{equation} - \tau = \tan \psi \sigma_\text{n}' + \tau_\text{c}, - \label{eq:shear_stress} -\end{equation} -\begin{equation} - \tan \psi = K\left(\phi_\text{c}(I) - \phi\right). - \label{eq:dilatancy_angle} -\end{equation} -The dilatancy angle $\psi$ is a state variable that reflects the materials tendency to compact or dilate from its present state during shear. -Its value is positive for compacted materials with current porosity larger than their critical state porosity, and vice versa. -The empirical constant $K$ links porosity deviations and the dilatancy angle. Unlike \citet{Pailha2009} we do not implicitly prescribe the viscous drag during dilation and equation, as we instead solve for the fluid pressure which is described in the following section. -The permeability of the pore network can for simple materials be scaled through empirical relations \citep[e.g.][]{Hazen1911, Kozeny1927, Carman1937, Krumbein1943, Harleman1963, Schwartz2003}. -We apply the common Kozeny-Carman relationship \citep{Goren2011, Damsgaard2015}: - -\begin{equation} - k(\phi) = \frac{d^2}{180} \frac{\phi^3}{{(1-\phi)}^2} - \label{eq:k} -\end{equation} -https://www.overleaf.com/6999857524nqxtxjvksmvr \subsection{Fluid-pressure evolution}% \label{sub:fluid_pressure_evolution} The transient evolution of pore-fluid pressure ($p_\text{f}$) is governed by Darcian pressure diffusion and local forcing by volumetric changes to the pore volume \citep{Goren2010, Goren2011, Damsgaard2017}: \begin{equation} \frac{\partial p_\text{f}}{\partial t} = \frac{1}{\phi\mu_\text{f}\beta_\text{f}} \nabla \cdot (k \nabla p_\text{f}) - - \frac{1}{\beta_\text{f}(1-\phi)} \left( - \frac{\partial \phi}{\partial t} + \boldsymbol{v}_\text{s} \cdot \nabla \phi \right), \label{eq:p_f} \end{equation} where $\mu_\text{f}$ denotes dynamic fluid viscosity [Pa s], $\beta_\text{f}$ is adiabatic fluid compressibility [Pa$^{-1}$], and $k$ is intrinsic permeability [m$^2$]. -The porosity change forcing ($\partial\phi/\partial t$) is corrected for porosity advection ($\boldsymbol{v}_\text{s} \cdot \nabla \phi$). -If the sediment is assumed to be in the critical state throughout the domain, as in the original formulation by \citet{Henann2013}, the rightmost term in Eq.~\ref{eq:p_f} can be discarded as porosity is constant. +The sediment is assumed to be in the critical state throughout the domain, as in the original formulation by \citet{Henann2013}. +For that reason there is no need to correct for porosity advection as in \citet{Damsgaard2015}. However, we include transient dynamics due to the interplay of sediment and water during shear zone formation and vanishment, as these deviations in water pressure can contribute hardening and weakening, respectively \citep[e.g.][]{Iverson1998, Moore2002, Pailha2008, Damsgaard2015, Damsgaard2016}. \subsection{Numerical solution procedure}%