manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit 593419284792a4d195e59bd8fda8c22c45873dbb
parent 3cabd0bed45a1f2f191cd53c3cc8ae807c34b304
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Mon, 24 Jun 2019 13:12:34 +0200

Add fluid methods, use tabs for indentation

Diffstat:
Mcontinuum-granular-manuscript1.tex | 59+++++++++++++++++++++++++++++++++--------------------------
1 file changed, 33 insertions(+), 26 deletions(-)

diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -62,40 +62,39 @@ We expand a steady-state continuum model for granular flow by \citet{Henann2013} In our model, the sediment deforms as a highly nonlinear Bingham material with yield beyond the Mohr-Coulomb failure limit for a cohesionless material. We assume that the elasticity is negligible and set the total shear rate $\dot{\gamma}$ to consist of a plastic contribution $\dot{\gamma}^\text{p}$: \begin{equation} - \dot{\gamma} \approx \dot{\gamma}^\text{p} = g(\mu_\text{c}, \sigma_\text{n}') \mu, - \label{eq:shear-strain-rate} + \dot{\gamma} \approx \dot{\gamma}^\text{p} = g(\mu_\text{c}, \sigma_\text{n}') \mu, + \label{eq:shear-strain-rate} \end{equation} where $\mu = \tau/\sigma_\text{n}'$ is the dimensionless ratio between shear stress ($\tau$ [Pa]) and effective normal stress ($\sigma_\text{n}' = \sigma_\text{n} - p_f$ [Pa]). Water pressure is $p_\text{f}$ [Pa] and $g$ [s$^{-1}$] is the granular fluidity. The fluidity consists of local and non-local components. The local fluidity is defined as: \begin{equation} - g_\text{local}(\mu, \sigma_\text{n}') = - \begin{cases} - \sqrt{d^2 \sigma_\text{n}' / \rho_\text{s}} (\mu - \mu_\text{s})/(b\mu) &\text{if } \mu > \mu_\text{s} \text{, and}\\ - 0 &\text{if } \mu \leq \mu_\text{s}. - \end{cases} - \label{eq:g_local} + g_\text{local}(\mu, \sigma_\text{n}') = + \begin{cases} + \sqrt{d^2 \sigma_\text{n}' / \rho_\text{s}} (\mu - \mu_\text{s})/(b\mu) &\text{if } \mu > \mu_\text{s} \text{, and}\\ + 0 &\text{if } \mu \leq \mu_\text{s}. + \end{cases} + \label{eq:g_local} \end{equation} For steady flow the non-locality is determined by the cooperativity length $\xi$: \begin{equation} - \nabla^2 g = \frac{1}{\xi^2(\mu)} (g - g_\text{local}), - \label{eq:g} + \nabla^2 g = \frac{1}{\xi^2(\mu)} (g - g_\text{local}), + \label{eq:g} \end{equation} where \begin{equation} - \xi(\mu) = \frac{Ad}{\sqrt{|\mu - \mu_\text{s}|}}. - \label{eq:cooperativity} + \xi(\mu) = \frac{Ad}{\sqrt{|\mu - \mu_\text{s}|}}. + \label{eq:cooperativity} \end{equation} - Unlike \citet{Pailha2009} we do not implicitly prescribe the viscous drag during dilation and equation, and instead solve for the fluid pressure. \subsection{Fluid-pressure evolution}% \label{sub:fluid_pressure_evolution} The transient evolution of pore-fluid pressure ($p_\text{f}$) is governed by Darcian pressure diffusion \citep[e.g.]{Goren2010, Goren2011, Damsgaard2017}: \begin{equation} - \frac{\partial p_\text{f}}{\partial t} = \frac{1}{\phi\mu_\text{f}\beta_\text{f}} \nabla \cdot (k \nabla p_\text{f}) - \label{eq:p_f} + \frac{\partial p_\text{f}}{\partial t} = \frac{1}{\phi\mu_\text{f}\beta_\text{f}} \nabla \cdot (k \nabla p_\text{f}) + \label{eq:p_f} \end{equation} where $\mu_\text{f}$ denotes dynamic fluid viscosity [Pa s], $\beta_\text{f}$ is adiabatic fluid compressibility [Pa$^{-1}$], and $k$ is intrinsic permeability [m$^2$]. The sediment is assumed to be in the critical state throughout the domain, as in the original formulation by \citet{Henann2013}. @@ -116,24 +115,32 @@ The fluidity field $g$ is solved for a set of mechanical forcings ($\mu$, $\sigm We rearrange Eq.~\ref{eq:g} and split the Laplace operator ($\nabla^2$) into a 1D central finite difference 3-point stencil. An iterative scheme is applied to relax the following equation at each grid node $i$: \begin{equation} - g_i = {\left(1 + \alpha_i\right)}^{-1} - \left(\alpha_i g_\text{local}(\sigma_{\text{n},i}', \mu_i) - + \frac{g_{i+1} + g_{i-1}}{2} - \right) - \label{eq:g_i} + g_i = {\left(1 + \alpha_i\right)}^{-1} + \left(\alpha_i g_\text{local}(\sigma_{\text{n},i}', \mu_i) + + \frac{g_{i+1} + g_{i-1}}{2} + \right) + \label{eq:g_i} \end{equation} where \begin{equation} - \alpha_i = \frac{\Delta z^2}{2\xi^2(\mu_i)} - \label{eq:alpha} + \alpha_i = \frac{\Delta z^2}{2\xi^2(\mu_i)} + \label{eq:alpha} \end{equation} -Similarly, we also use operator splitting and finite differences to solve the equation for pore-pressure diffusion (Eq.~\ref{eq:p_f}). The pore-pressure solution is constrained by a zero pressure gradient at the bottom ($dp_\text{f}/dz (z=0) = 0$), and a sinusoidal pressure forcing at the top ($p_\text{f}(z = L_z) = A \sin(2\pi f t) + p_{\text{f},0}$). Here, $A$ is the forcing amplitude [Pa], $f$ is the forcing frequency [1/s], and $p_{\text{f},0}$ is the mean pore pressure over time [Pa]. - -For each time step $\Delta t$, a pore-pressure solution is found by explicit temporal integration. -We then use Jacobian iterations to find an implicit solution through underrelaxation over the same time step. +We also use operator splitting and finite differences to solve the equation for pore-pressure diffusion (Eq.~\ref{eq:p_f}): +\begin{equation} + \Delta p_{\text{f},i} = \frac{\Delta t}{\beta_\text{f} \phi_i \mu_\text{f}} + \frac{1}{\Delta z} + \left( + \frac{2 k_{i+1} k_i}{k_{i+1} + k_i} \frac{p_{i+1} - p_i}{\Delta z} - + \frac{2 k_{i-1} k_i}{k_{i-1} + k_i} \frac{p_i - p_{i-1}}{\Delta z} - + \right) + \label{eq:p_f_solution} +\end{equation} +For each time step $\Delta t$, a solution to Eq.~\ref{eq:p_f_solution} is first found by explicit temporal integration. +We then use Jacobian iterations to find an implicit solution to the same equation through underrelaxation. For the final pressure field at $t + \Delta t$ we mix the explicit and implicit solutions with equal weight, which is known as the Crank-Nicholson method \citep[e.g.][]{Patankar1980, Ferziger2002, Press2007}. The method is unconditionally stable and second-order accurate in time and space.