manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs Back to index

commit 65fe096466dbcd95c90995f14c175d197df5ee66
parent ea8b41912f9acd9b30fcf0eef2a7b2907c0e7875
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Tue, 10 Dec 2019 16:05:22 +0100

Begin adding Liran's analytical solution to SI

Diffstat:
Mcontinuum-granular-manuscript1.tex | 1+
Msi.tex | 43++++++++++++++++++++++++++++++++++++++++++-
2 files changed, 43 insertions(+), 1 deletion(-)

diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -337,6 +337,7 @@ Due to higher hydraulic permeability, coarse tills are more susceptible to deep On the contrary, fine-grained tills are unlikely to undergo deep deformation. Instead, lateral water input from lake drainage or hydrological rerouting at depth may be a viable alternate mechanism for creating occasional episodes of deep slip, in particular when horizontal bedding decreases vertical permeability \cite<e.g.,>[] {Kjaer2006}. + \section{Conclusion}% \label{sec:conclusion} We present a new model for coupled computation of subglacial till and water. diff --git a/si.tex b/si.tex @@ -176,7 +176,7 @@ Ben-Gurion University of the Negev} \noindent\textbf{Contents of this file} %%%Remove or add items as needed%%% \begin{enumerate} -\item Text S1 +\item Text S1 to S2 \item Figures S1 to S3 \item Table S1 %if Tables are larger than 1 page, upload as separate excel file @@ -310,6 +310,47 @@ In rate-\emph{limited} experiments, the iterative procedure is only performed fo \clearpage{} +\noindent\textbf{Text S2. Analytical solution for maximum deformation depth} + +Here, $z'$ is depth below the ice-bed interface, i.e.\ $z' = L_z - z$. + +\begin{linenomath*} +\begin{equation} + \sigma_\mathrm{n}'(z',t) + = + \sigma_\mathrm{n} + + (\rho_\mathrm{s} - \rho_\mathrm{f}) G z' % 1-phi here? + - p_\mathrm{f,top} + - A_\mathrm{f} \exp \left( - \frac{z'}{d_\mathrm{s}} \right) + \sin \left( \omega t - \frac{z'}{d_\mathrm{s}} \right) +\end{equation} +\end{linenomath*} + +\begin{linenomath*} +\begin{equation} + \frac{d\sigma_\mathrm{n}'}{dz'}(z',t) + = + (\rho_\mathrm{s} - \rho_\mathrm{f}) G % 1-phi here? + %- p_\mathrm{f,top} + + \frac{A_\mathrm{f}}{d_\mathrm{s}} \exp \left( - \frac{z'}{d_\mathrm{s}} \right) + \left[ \sin \left( \omega t - \frac{z'}{d_\mathrm{s}} \right) + + \cos \left( \omega t - \frac{z'}{d_\mathrm{s}} \right) \right] +\end{equation} +\end{linenomath*} +We would like to find the depth $z'$ where $d\sigma_\mathrm{n}'/dz' = 0$. At that depth the effective normal stress is at a minimum and deep deformation can occur. +In our simulations we observe that the deepest deformation occurs when water pressure is at its minimum at the ice-bed interface, which means that $t=3\pi/2\omega$: +\begin{linenomath*} +\begin{equation} + \sin \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) + + \cos \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) + = + - \frac{(\rho_\mathrm{s} - \rho_\mathrm{s}) G d_\mathrm{s}}{A_\mathrm{f}} + - \exp \left( \frac{z'}{d_\mathrm{s}} \right) +\end{equation} +\end{linenomath*} + +\clearpage{} + %\noindent\textbf{Data Set S1.} %Type or paste caption here.