manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs Back to index

commit b3eb177bad02fa955c93db8374504da9bccd5455
parent bfacabe59c857e9789be11a2bc62fc2b7b10a6ef
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Mon, 16 Dec 2019 14:37:42 +0100

Update with more on analytical solution

Diffstat:
Mcontinuum-granular-manuscript1.tex | 16++++++++++++++--
Msi.tex | 24++++++++----------------
2 files changed, 22 insertions(+), 18 deletions(-)

diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -321,8 +321,20 @@ As long as fluid and diffusion properties are constant and the layer is sufficie \end{linenomath*} where $D$ is the hydraulic diffusivity [m$^2$/s] and $P$ [s] is the period of the oscillations. The remaining terms were previously defined. -Figure~\ref{fig:skin_depth}a shows the skin depth for water at 0$^\circ$C under a range of permeabilities and forcing frequencies. -We find that skin depth calculations can be a useful starting point for determining scenarios where deep deformation is possible. +However, as the deformation pattern depends on both hydraulic properties and the forcing amplitude (Fig.~S3), the skin depth alone is insufficient to judge the occurence of deep deformation. +Instead, we analytical solution for diffusive pressure perturbation can be used to find the largest depth $z'$ containing a minimum of effective normal stress over the cause of a pressure-perturbation cycle (see SI Text S1): +\begin{linenomath*} +\begin{equation} + 0 = + \sin \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) + + \cos \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) + + \frac{(\rho_\mathrm{s} - \rho_\mathrm{f}) G d_\mathrm{s}}{A_\mathrm{f}} + \exp \left( \frac{z'}{d_\mathrm{s}} \right) + \label{eq:max_depth} +\end{equation} +\end{linenomath*} +Figure~\ref{fig:skin_depth}a shows the skin depth for water at 0$^\circ$C under a range of permeabilities and forcing frequencies, while panels~\ref{fig:skin_depth}b and~c show solutions to Eq.~\ref{eq:max_depth}. + The stick-slip experiments (Fig.~\ref{fig:stick_slip}) correspond to a skin depth of 2.2 meter. Practically all of the shear strain through a perturbation cycle occurs above the skin depth (green horizontal line in Fig.~\ref{fig:stick_slip_depth}). However, minima in effective normal stress are increasingly difficult to create at larger depths through pure diffusion from the ice-bed interface. diff --git a/si.tex b/si.tex @@ -311,9 +311,9 @@ In rate-\emph{limited} experiments, the iterative procedure is only performed fo \clearpage{} \noindent\textbf{Text S2. Analytical solution for maximum deformation depth} - -Here, $z'$ is depth below the ice-bed interface, i.e.\ $z' = L_z - z$. - +The depth profile and transient behavior of effective normal stress $\sigma_\mathrm{n}'$ can be found by extending a solution for dispersion of a sinusoidal forcing through a diffusive medium \cite<Eq.~4.88> {Turcotte2002}. +It is assumed that the bed is a semi-infinite halfspace. +Here, $z'$ is depth below the ice-bed interface, i.e.\ $z' = L_z - z$: \begin{linenomath*} \begin{equation} \sigma_\mathrm{n}'(z',t) @@ -322,10 +322,10 @@ Here, $z'$ is depth below the ice-bed interface, i.e.\ $z' = L_z - z$. + (\rho_\mathrm{s} - \rho_\mathrm{f}) G z' - p_\mathrm{f,top} - A_\mathrm{f} \exp \left( - \frac{z'}{d_\mathrm{s}} \right) - \sin \left( \omega t - \frac{z'}{d_\mathrm{s}} \right) + \sin \left( \omega t - \frac{z'}{d_\mathrm{s}} \right). \end{equation} \end{linenomath*} - +The vertical gradient of the effective normal stress is found by, \begin{linenomath*} \begin{equation} \frac{d\sigma_\mathrm{n}'}{dz'}(z',t) @@ -334,20 +334,12 @@ Here, $z'$ is depth below the ice-bed interface, i.e.\ $z' = L_z - z$. %- p_\mathrm{f,top} + \frac{A_\mathrm{f}}{d_\mathrm{s}} \exp \left( - \frac{z'}{d_\mathrm{s}} \right) \left[ \sin \left( \omega t - \frac{z'}{d_\mathrm{s}} \right) - + \cos \left( \omega t - \frac{z'}{d_\mathrm{s}} \right) \right] + + \cos \left( \omega t - \frac{z'}{d_\mathrm{s}} \right) \right]. \end{equation} \end{linenomath*} -We would like to find the depth $z'$ where $d\sigma_\mathrm{n}'/dz' = 0$. At that depth the effective normal stress is at a minimum and deep deformation can occur. +For this study, we want to find the depth $z'$ where $d\sigma_\mathrm{n}'/dz' = 0$. +At this depth the effective normal stress is at a minimum and deep deformation can occur. In our simulations we observe that the deepest deformation occurs when water pressure is at its minimum at the ice-bed interface, which means that $t=3\pi/2\omega$: -%\begin{linenomath*} -%\begin{equation} -% \sin \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) -% + \cos \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) -% = -% - \frac{(\rho_\mathrm{s} - \rho_\mathrm{f}) G d_\mathrm{s}}{A_\mathrm{f}} -% \exp \left( \frac{z'}{d_\mathrm{s}} \right) -%\end{equation} -%\end{linenomath*} \begin{linenomath*} \begin{equation} 0 =