manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit d11cc47f2f2165b487410373ee5cc7876cafddbb
parent e656b2632a4c7d73766c6aa1608c80453cc88363
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Mon,  8 Jul 2019 12:14:39 +0200

Add cohesion to granular flow equations

Diffstat:
Mcontinuum-granular-manuscript1.tex | 9+++++----
Mexperiments/fig3.pdf | 0
2 files changed, 5 insertions(+), 4 deletions(-)

diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -66,16 +66,17 @@ We assume that the elasticity is negligible and set the total shear rate $\dot{\ where $\mu = \tau/\sigma_\text{n}'$ is the dimensionless ratio between shear stress ($\tau$ [Pa]) and effective normal stress ($\sigma_\text{n}' = \sigma_\text{n} - p_f$ [Pa]). Water pressure is $p_\text{f}$ [Pa] and $g$ [s$^{-1}$] is the granular fluidity. The fluidity consists of local and non-local components. +We expand the fluidity term in \citet{Henann2013} to account for material cohesion. The local fluidity is defined as: \begin{equation} g_\text{local}(\mu, \sigma_\text{n}') = \begin{cases} - \sqrt{d^2 \sigma_\text{n}' / \rho_\text{s}} (\mu - \mu_\text{s})/(b\mu) &\text{if } \mu > \mu_\text{s} \text{, and}\\ - 0 &\text{if } \mu \leq \mu_\text{s}. + \sqrt{d^2 \sigma_\text{n}' / \rho_\text{s}} ((\mu - C/\sigma_\text{n}' - \mu_\text{s})/(b\mu) &\text{if } \mu - C/\sigma_\text{n}') > \mu_\text{s} \text{, and}\\ + 0 &\text{if } \mu - C/\sigma_\text{n}' \leq \mu_\text{s}. \end{cases} \label{eq:g_local} \end{equation} -where $d$ [m] is the representative grain diameter, $\mu_\text{s}$ [-] is the static Coulomb yield coefficient, and $b$ [-] is the non-linear rate dependence beyond yield. +where $d$ [m] is the representative grain diameter, $\mu_\text{s}$ [-] is the static Coulomb yield coefficient, $C$ [Pa] is the material cohesion, and $b$ [-] is the non-linear rate dependence beyond yield. For steady flow the non-locality is determined by a Poisson-type equation where strain is spread in space, as scaled by the cooperativity length $\xi$: \begin{equation} \nabla^2 g = \frac{1}{\xi^2(\mu)} (g - g_\text{local}), @@ -83,7 +84,7 @@ For steady flow the non-locality is determined by a Poisson-type equation where \end{equation} where \begin{equation} - \xi(\mu) = \frac{Ad}{\sqrt{|\mu - \mu_\text{s}|}}. + \xi(\mu) = \frac{Ad}{\sqrt{|(\mu - C/\sigma_\text{n}') - \mu_\text{s}|}}. \label{eq:cooperativity} \end{equation} The non-locality scales with nonlocal amplitude $A$ [-]. diff --git a/experiments/fig3.pdf b/experiments/fig3.pdf Binary files differ.