manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit d3e3eeab13f3d16f87b2c5c7bc4e806f2848d810
parent 038784f95499ce09c5e32ccbeaba7472ec1f348e
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Mon, 24 Jun 2019 18:06:00 +0200

Update BC and appendix note

Diffstat:
Mcontinuum-granular-manuscript1.tex | 5+++--
1 file changed, 3 insertions(+), 2 deletions(-)

diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -127,7 +127,7 @@ where \end{equation} We apply fixed-value (Dirichlet) boundary conditions for the fluidity field ($g(z=0) = g(z=L_z) = 0$). This condition causes the velocity field transition towards a constant value at the domain edges. -Neumann boundary conditions, on the contrary, create a velocity profile resembling a free surface flow. +Neumann boundary conditions, which are not used here, create a velocity profile resembling a free surface flow. The pore-pressure solution (Eq.~\ref{eq:p_f}) is constrained by a zero pressure gradient at the bottom ($dp_\text{f}/dz (z=0) = 0$), and a sinusoidal pressure forcing at the top ($p_\text{f}(z = L_z) = A \sin(2\pi f t) + p_{\text{f},0}$). Here, $A$ is the forcing amplitude [Pa], $f$ is the forcing frequency [1/s], and $p_{\text{f},0}$ is the mean pore pressure over time [Pa]. @@ -150,7 +150,8 @@ The method is unconditionally stable and second-order accurate in time and space \section*{Appendix}% \label{sec:appendix} -The source code for the model is available at \url{https://gitlab.com/admesg/1d_fd_simple_shear}. +The source code for the grain-water model is available at \url{https://gitlab.com/admesg/1d_fd_simple_shear}. +All figures and data can be reproduced by following the instructions in the experiment repository for this publication, available at \url{https://gitlab.com/admesg/continuum_granular_exp_manus1}. %% Bibliography \printbibliography{}