pism-exp-gsw

ice stream and sediment transport experiments
git clone git://src.adamsgaard.dk/pism-exp-gsw # fast
git clone https://src.adamsgaard.dk/pism-exp-gsw.git # slow
Log | Files | Refs | README | LICENSE Back to index

commit 67cc411b812c5b5294d00318345a3977068da6f5
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Fri, 19 Nov 2021 08:53:57 +0100

first commit

Diffstat:
ALICENSE | 681+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
AMISMIP.py | 312+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
AMakefile | 49+++++++++++++++++++++++++++++++++++++++++++++++++
APISMNC.py | 178+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
AREADME | 15+++++++++++++++
AREADME.md | 139+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aflowlineslab.py | 43+++++++++++++++++++++++++++++++++++++++++++
Apism_python.py | 100+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aplot.py | 236+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Aprepare.py | 171+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Arun.py | 392+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
11 files changed, 2316 insertions(+), 0 deletions(-)

diff --git a/LICENSE b/LICENSE @@ -0,0 +1,681 @@ +The Python scripts in this repository are derived from PISM examples, +see https://github.com/pism/pism for AUTHOR information. + +Like the PISM original source, all files in this repository are subject +to the GNU Public License v. 3, included in full below. + + + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + <one line to give the program's name and a brief idea of what it does.> + Copyright (C) <year> <name of author> + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + <program> Copyright (C) <year> <name of author> + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +<http://www.gnu.org/licenses/>. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +<http://www.gnu.org/philosophy/why-not-lgpl.html>. diff --git a/MISMIP.py b/MISMIP.py @@ -0,0 +1,312 @@ +#!/usr/bin/env python3 +import numpy as np + +"""This module contains MISMIP constants and parameters, as well as functions +computing theoretical steady state profiles corresponding to various MISMIP +experiments. + +It should not be cluttered with plotting or NetCDF output code. +""" + + +def secpera(): + "Number of seconds per year." + return 3.15569259747e7 + + +def L(): + "The length of the MISMIP domain." + return 1800e3 + + +def N(mode): + "Number of grid spaces corresponding to a MISMIP 'mode.'" + if mode == 1: + return 150 + + if mode == 2: + return 1500 + + raise ValueError("invalid mode (%s)" % mode) + + +def A(experiment, step): + """Ice softness parameter for given experiment and step.""" + A1 = np.array([4.6416e-24, 2.1544e-24, 1.0e-24, + 4.6416e-25, 2.1544e-25, 1.0e-25, + 4.6416e-26, 2.1544e-26, 1.0e-26]) + # Values of A to be used in experiments 1 and 2. + + A3a = np.array([3.0e-25, 2.5e-25, 2.0e-25, + 1.5e-25, 1.0e-25, 5.0e-26, + 2.5e-26, 5.0e-26, 1.0e-25, + 1.5e-25, 2.0e-25, 2.5e-25, + 3.0e-25]) + # Values of A to be used in experiment 3a. + + A3b = np.array([1.6e-24, 1.4e-24, 1.2e-24, + 1.0e-24, 8.0e-25, 6.0e-25, + 4.0e-25, 2.0e-25, 4.0e-25, + 6.0e-25, 8.0e-25, 1.0e-24, + 1.2e-24, 1.4e-24, 1.6e-24]) + # Values of A to be used in experiment 3b. + + try: + if experiment in ("1a", "1b", "2a", "2b"): + return A1[step - 1] + + if experiment == "3a": + return A3a[step - 1] + + if experiment == "3b": + return A3b[step - 1] + except: + raise ValueError("invalid step (%s) for experiment %s" % (step, experiment)) + + raise ValueError("invalid experiment (%s)" % experiment) + + +def run_length(experiment, step): + """Returns the time interval for an experiment 3 step.""" + T3a = np.array([3.0e4, 1.5e4, 1.5e4, + 1.5e4, 1.5e4, 3.0e4, + 3.0e4, 1.5e4, 1.5e4, + 3.0e4, 3.0e4, 3.0e4, + 1.5e4]) + # Time intervals to be used in experiment 3a. + + T3b = np.array([3.0e4, 1.5e4, 1.5e4, + 1.5e4, 1.5e4, 1.5e4, + 1.5e4, 3.0e4, 1.5e4, + 1.5e4, 1.5e4, 1.5e4, + 1.5e4, 3.0e4, 1.5e4]) + # Time intervals to be used in experiment 3b. + + try: + if experiment == "3a": + return T3a[step - 1] + + if experiment == "3b": + return T3b[step - 1] + except: + raise ValueError("invalid step (%s) for experiment %s" % (step, experiment)) + + return 3e4 + + +def rho_i(): + "Ice density" + return 900.0 + + +def rho_w(): + "Water density" + return 1000.0 + + +def g(): + """Acceleration due to gravity. (Table 2 on page 19 of mismip_4.pdf + uses this value, i.e. g = 9.8 m s-2.)""" + return 9.8 + + +def n(): + "Glen exponent" + return 3.0 + + +def a(): + "Accumulation rate (m/s)" + return 0.3 / secpera() + + +def m(experiment): + "Sliding law exponent" + if experiment in ("1a", "2a", "3a"): + return 1 / 3.0 + + if experiment in ("1b", "2b", "3b"): + return 1.0 + + raise ValueError("invalid experiment (%s)" % experiment) + + +def C(experiment): + "Sliding law coefficient" + if experiment in ("1a", "2a", "3a"): + return 7.624e6 + + if experiment in ("1b", "2b", "3b"): + return 7.2082e10 + + raise ValueError("invalid experiment (%s)" % experiment) + + +def b(experiment, x): + "Bed depth below sea level. (-b(x) = topg(x))" + + if experiment in ("1a", "1b", "2a", "2b"): + return -720. + 778.5 * (x / 7.5e5) + + if experiment in ("3a", "3b"): + xx = x / 7.5e5 + return -(729. - 2184.8 * xx ** 2. + 1031.72 * xx ** 4. - 151.72 * xx ** 6.) + + raise ValueError("invalid experiment (%s)" % experiment) + + +def b_slope(experiment, x): + """The x-derivative of b(experiment, x).""" + + if experiment in ("1a", "1b", "2a", "2b"): + return 778.5 / 7.5e5 + + if experiment in ("3a", "3b"): + xx = x / 7.5e5 + return -(- 2184.8 * (2. / 7.5e5) * xx + + 1031.72 * (4. / 7.5e5) * xx ** 3. + - 151.72 * (6. / 7.5e5) * xx ** 5.) + + raise ValueError("invalid experiment (%s)" % experiment) + + +def cold_function(experiment, step, x, theta=0.0): + """Evaluates function whose zeros define x_g in 'cold' steady marine sheet problem.""" + r = rho_i() / rho_w() + h_f = r ** (-1.) * b(experiment, x) + b_x = b_slope(experiment, x) + s = a() * x + rho_g = rho_i() * g() + return (theta * a() + + C(experiment) * s ** (m(experiment) + 1.0) / (rho_g * h_f ** (m(experiment) + 2.)) + - theta * s * b_x / h_f + - A(experiment, step) * (rho_g * (1.0 - r) / 4.0) ** n() * h_f ** (n() + 1.0)) + + +def x_g(experiment, step, theta=0.0): + """Computes the theoretical grounding line location using Newton's method.""" + + # set the initial guess + if experiment in ("3a", "3b"): + x = 800.0e3 + else: + x = 1270.0e3 + + delta_x = 10. # Finite difference step size (metres) for gradient calculation + tolf = 1.e-4 # Tolerance for finding zeros + eps = np.finfo(float).eps + normf = tolf + eps + toldelta = 1.e1 # Newton step size tolerance + dx = toldelta + 1.0 + + # this is just a shortcut + def F(x): + return cold_function(experiment, step, x, theta) + + while (normf > tolf) or (abs(dx) > toldelta): + f = F(x) + normf = abs(f) + grad = (F(x + delta_x) - f) / delta_x + dx = -f / grad + x = x + dx + + return x + + +def thickness(experiment, step, x, theta=0.0): + """Compute ice thickness for x > 0. + """ + # compute the grounding line position + xg = x_g(experiment, step, theta) + + def surface(h, x): + b_x = b_slope(experiment, x) + rho_g = rho_i() * g() + s = a() * np.abs(x) + return b_x - (C(experiment) / rho_g) * s ** m(experiment) / h ** (m(experiment) + 1) + + # extract the grounded part of the grid + x_grounded = x[x < xg] + + # We will integrate from the grounding line inland. odeint requires that + # the first point in x_grid be the one corresponding to the initial + # condition; append it and reverse the order. + x_grid = np.append(xg, x_grounded[::-1]) + + # use thickness at the grounding line as the initial condition + h_f = b(experiment, xg) * rho_w() / rho_i() + + import scipy.integrate + thk_grounded = scipy.integrate.odeint(surface, [h_f], x_grid, atol=1.e-9, rtol=1.e-9) + + # now 'result' contains thickness in reverse order, including the grounding + # line point (which is not on the grid); discard it and reverse the order. + thk_grounded = np.squeeze(thk_grounded)[:0:-1] + + # extract the floating part of the grid + x_floating = x[x >= xg] + + # compute the flux through the grounding line + q_0 = a() * xg + + # Calculate ice thickness for shelf from van der Veen (1986) + r = rho_i() / rho_w() + rho_g = rho_i() * g() + numer = h_f * (q_0 + a() * (x_floating - xg)) + base = q_0 ** (n() + 1) + h_f ** (n() + 1) * ((1 - r) * rho_g / 4) ** n() * A(experiment, step) \ + * ((q_0 + a() * (x_floating - xg)) ** (n() + 1) - q_0 ** (n() + 1)) / a() + thk_floating = numer / (base ** (1.0 / (n() + 1))) + + return np.r_[thk_grounded, thk_floating] + + +def plot_profile(experiment, step, out_file): + from pylab import figure, subplot, hold, plot, xlabel, ylabel, text, title, axis, vlines, savefig + + if out_file is None: + out_file = "MISMIP_%s_A%d.pdf" % (experiment, step) + + xg = x_g(experiment, step) + + x = np.linspace(0, L(), N(2) + 1) + thk = thickness(experiment, step, x) + x_grounded, thk_grounded = x[x < xg], thk[x < xg] + x_floating, thk_floating = x[x >= xg], thk[x >= xg] + + figure(1) + ax = subplot(111) + hold(True) + plot(x / 1e3, np.zeros_like(x), ls='dotted', color='red') + plot(x / 1e3, -b(experiment, x), color='black') + plot(x / 1e3, np.r_[thk_grounded - b(experiment, x_grounded), + thk_floating * (1 - rho_i() / rho_w())], + color='blue') + plot(x_floating / 1e3, -thk_floating * (rho_i() / rho_w()), color='blue') + _, _, ymin, ymax = axis(xmin=0, xmax=x.max() / 1e3) + vlines(xg / 1e3, ymin, ymax, linestyles='dashed', color='black') + + xlabel('distance from the summit, km') + ylabel('elevation, m') + text(0.6, 0.9, "$x_g$ (theory) = %4.0f km" % (xg / 1e3), + color='black', transform=ax.transAxes) + title("MISMIP experiment %s, step %d" % (experiment, step)) + savefig(out_file) + + +if __name__ == "__main__": + from optparse import OptionParser + + parser = OptionParser() + + parser.usage = "%prog [options]" + parser.description = "Plots the theoretical geometry profile corresponding to MISMIP experiment and step." + parser.add_option("-e", "--experiment", dest="experiment", type="string", + default='1a', + help="MISMIP experiments (one of '1a', '1b', '2a', '2b', '3a', '3b')") + parser.add_option("-s", "--step", dest="step", type="int", default=1, + help="MISMIP step number") + parser.add_option("-o", dest="out_file", help="output file name") + + (opts, args) = parser.parse_args() + + plot_profile(opts.experiment, opts.step, opts.out_file) diff --git a/Makefile b/Makefile @@ -0,0 +1,48 @@ +NPROC != awk '/^cpu cores/ {print $$4; exit}' /proc/cpuinfo + +all: \ + ABC1_1a_M1_A1-flux.pdf\ + ABC1_1a_M3_A1-flux.pdf\ + ABC1_3a_M1_A1-flux.pdf\ + ABC1_3a_M3_A1-flux.pdf\ + +ABC1_1a_M1_A1-flux.pdf: ABC1_1a_M1_A1.nc plot.py + ./plot.py ABC1_1a_M1_A1.nc + +ABC1_1a_M3_A1-flux.pdf: ABC1_1a_M3_A1.nc plot.py + ./plot.py ABC1_1a_M3_A1.nc + +ABC1_3a_M1_A1-flux.pdf: ABC1_3a_M1_A1.nc plot.py + ./plot.py ABC1_3a_M1_A1.nc + +ABC1_3a_M3_A1-flux.pdf: ABC1_3a_M3_A1.nc plot.py + ./plot.py ABC1_3a_M3_A1.nc + +ABC1_1a_M1_A1.nc: experiment-1a-mode-1.sh + time sh experiment-1a-mode-1.sh ${NPROC} | tee out.1a-mode-1 + +ABC1_1a_M3_A1.nc: experiment-1a-mode-3.sh + time sh experiment-1a-mode-3.sh ${NPROC} | tee out.1a-mode-3 + +ABC1_3a_M1_A1.nc: experiment-3a-mode-1.sh + time sh experiment-3a-mode-1.sh ${NPROC} | tee out.3a-mode-1 + +ABC1_3a_M3_A1.nc: experiment-3a-mode-3.sh + time sh experiment-3a-mode-3.sh ${NPROC} | tee out.3a-mode-3 + +experiment-3a-mode-1.sh: run.py + ./run.py -e 3a --mode=1 > $@ + +experiment-3a-mode-3.sh: run.py + ./run.py -e 3a --mode=3 --Mx=1201 > $@ + +experiment-1a-mode-1.sh: run.py + ./run.py -e 1a --mode=1 > $@ + +experiment-1a-mode-3.sh: run.py + ./run.py -e 1a --mode=3 --Mx=1201 > $@ + +clean: + rm -f out.* experiment-*.sh *.nc *.pdf + +.PHONY: all clean+ \ No newline at end of file diff --git a/PISMNC.py b/PISMNC.py @@ -0,0 +1,178 @@ +#!/usr/bin/env python3 + +try: + import netCDF4 as netCDF +except: + print("netCDF4 is not installed!") + sys.exit(1) + + +class PISMDataset(netCDF.Dataset): + + def create_time(self, use_bounds=False, length=None, units=None): + self.createDimension('time', size=length) + t_var = self.createVariable('time', 'f8', ('time',)) + + t_var.axis = "T" + t_var.long_name = "time" + if not units: + t_var.units = "seconds since 1-1-1" # just a default + else: + t_var.units = units + + if use_bounds: + self.createDimension('n_bounds', 2) + self.createVariable("time_bounds", 'f8', ('time', 'n_bounds')) + t_var.bounds = "time_bounds" + + def create_dimensions(self, x, y, time_dependent=False, use_time_bounds=False): + """ + Create PISM-compatible dimensions in a NetCDF file. + """ + + if time_dependent and not 'time' in list(self.variables.keys()): + self.create_time(use_time_bounds) + + self.createDimension('x', x.size) + self.createDimension('y', y.size) + + x_var = self.createVariable('x', 'f8', ('x',)) + x_var[:] = x + + y_var = self.createVariable('y', 'f8', ('y',)) + y_var[:] = y + + x_var.axis = "X" + x_var.long_name = "X-coordinate in Cartesian system" + x_var.units = "m" + x_var.standard_name = "projection_x_coordinate" + + y_var.axis = "Y" + y_var.long_name = "Y-coordinate in Cartesian system" + y_var.units = "m" + y_var.standard_name = "projection_y_coordinate" + + self.sync() + + def append_time(self, value, bounds=None): + if 'time' in list(self.dimensions.keys()): + time = self.variables['time'] + N = time.size + time[N] = value + + if bounds: + self.variables['time_bounds'][N, :] = bounds + + def set_attrs(self, var_name, attrs): + """attrs should be a list of (name, value) tuples.""" + if not attrs: + return + + for (name, value) in attrs.items(): + if name == "_FillValue": + continue + setattr(self.variables[var_name], name, value) + + def define_2d_field(self, var_name, time_dependent=False, dims=None, nc_type='f8', attrs=None): + """ + time_dependent: boolean + + dims: an optional list of dimension names. use this to override the + default order ('time', 'y', 'x') + + attrs: a dictionary of attributes + """ + if not dims: + if time_dependent: + dims = ('time', 'y', 'x') + else: + dims = ('y', 'x') + + try: + var = self.variables[var_name] + except: + if attrs is not None and '_FillValue' in list(attrs.keys()): + var = self.createVariable(var_name, nc_type, dims, + fill_value=attrs['_FillValue']) + else: + var = self.createVariable(var_name, nc_type, dims) + + self.set_attrs(var_name, attrs) + + return var + + def define_timeseries(self, var_name, attrs=None): + try: + if attrs is not None and '_FillValue' in list(attrs.keys()): + var = self.createVariable(var_name, 'f8', ('time',), + fill_value=attrs['_FillValue']) + else: + var = self.createVariable(var_name, 'f8', ('time',)) + except: + var = self.variables[var_name] + + self.set_attrs(var_name, attrs) + + return var + + def write(self, var_name, data, time_dependent=False, attrs=None): + """ + Write time-series or a 2D field to a file. + """ + + if data.ndim == 1: + return self.write_timeseries(var_name, data, attrs=attrs) + elif data.ndim == 2: + return self.write_2d_field(var_name, data, time_dependent, attrs=attrs) + else: + return None + + def write_2d_field(self, var_name, data, time_dependent=False, attrs=None): + """ + Write a 2D numpy array to a file in a format PISM can read. + """ + + var = self.define_2d_field(var_name, time_dependent, attrs=attrs) + + if time_dependent: + last_record = self.variables['time'].size - 1 + var[last_record, :, :] = data + else: + var[:] = data + + return var + + def write_timeseries(self, var_name, data, attrs=None): + """Write a 1D (time-series) array to a file.""" + + var = self.define_timeseries(var_name, attrs=attrs) + var[:] = data + + return var + + +if __name__ == "__main__": + # produce a NetCDF file for testing + from numpy import linspace, meshgrid + + nc = PISMDataset("foo.nc", 'w') + + x = linspace(-100, 100, 101) + y = linspace(-100, 100, 201) + + xx, yy = meshgrid(x, y) + + nc.create_dimensions(x, y, time_dependent=True, use_time_bounds=True) + + nc.define_2d_field("xx", time_dependent=True, + attrs={"long_name": "xx", + "comment": "test variable", + "valid_range": (-200.0, 200.0)}) + + for t in [0, 1, 2, 3]: + nc.append_time(t, (t - 1, t)) + + nc.write("xx", xx + t, time_dependent=True) + nc.write("yy", yy + 2 * t, time_dependent=True) + + nc.close() diff --git a/README b/README @@ -0,0 +1,14 @@ +This repository is hosted at [0] and includes a modified version of the +PISM[1] MISMIP example. All scripts here should be run with a modified +version of PISM[2] that supports modeling of subglacial till advection. + +Author: +Anders Damsgaard <anders@adamsgaard.dk> + +License: +See LICENSE + +References: +0: https://src.adamsgaard.dk/pism-exp-gsw +1: https://github.com/pism/pism +2: https://src.adamsgaard.dk/pism (tillflux branch)+ \ No newline at end of file diff --git a/README.md b/README.md @@ -0,0 +1,139 @@ +MISMIP in PISM +============== + +This directory contains scripts that can be used to run MISMIP experiments using PISM. To understand the intent of these experiments, please see the MISMIP website at http://homepages.ulb.ac.be/~fpattyn/mismip/, and download the intercomparison description PDF from that site. + +Older PISM versions included C++ code managing MISMIP experiments. With the addition of more sophisticated reporting code that old code became unnecessary. Here all MISMIP-specific code is in Python scripts. + +Step by step instructions +------------------------- + +First of all, you will need to copy or symlink `util/PISMNC.py` into the +current directory to make sure that Python will be able to import it. + +The script `run.py` is used to generate a `bash` scripts performing MISMIP +experiments. Running `run.py --help` produces the following: + + Usage: run.py [options] + + Creates a script running MISMIP experiments. + + Options: + -h, --help show this help message and exit + --initials=INITIALS Initials (3 letters) + -e EXPERIMENT, --experiment=EXPERIMENT + MISMIP experiments (one of '1a', '1b', '2a', '2b', + '3a', '3b') + -s STEP, --step=STEP MISMIP step number + -u, --uniform_thickness + Use uniform 10 m ice thickness + -a, --all Run all experiments + -m MODE, --mode=MODE MISMIP grid mode + --Mx=MX Custom grid size; use with --mode=3 + --model=MODEL Models: 1 - SSA only; 2 - SIA+SSA + --executable=EXECUTABLE + Executable to run, e.g. 'mpiexec -n 4 pismr' + +For example, to set up MISMIP experiment `1a` using grid mode 1, a 12 km grid, run + + ./run.py -e 1a --mode=1 > experiment-1a-mode-1.sh + +This will create `experiment-1a-mode-1.sh` as well as the bootstrapping file +`MISMIP_boot_1a_M1_A1.nc` and configuration files corresponding to each "step" +in the experiment. + +Run in the backround with 2 cores and saving output to a text file this way: + + bash experiment-1a-mode-1.sh 2 >& out.1a-mode-1 & + +You can also copy the script (along with +`MISMIP_boot_1a_M1_A1.nc` and `MISMIP_conf_1a_A*.nc`) to a supercomputer to +do the run later. For such application, the script helpfully uses environment variables `PISM_DO`, +`PISM_BIN` and `PISM_MPIDO`. For example, on some Cray machines you might do + + PISM_MPIDO="aprun -n " bash experiment-1a-mode-1.sh 32 + +will use `aprun` on 32 cores. Alternatively, you can use + + ./run.py -e 1a --mode=1 --executable="aprun -n 32 pismr" + +or similar to skip the "preamble" handling environment variables and get "raw" +commands. + + +Refined grid runs +----------------- + +The above "grid mode 1" runs use 150 grid spaces in the MISMIP modeling domain, +which is 301 grid points in PISM's (doubled) domain. The domain is doubled because +PISM is easiest configure as a whole ice sheet model with ice free ocean at the +edge of the computation domain. (Compare the example in `examples/jako/`, however.) + +To run a higher resolution 3 km grid, with somewhat-improved grounding line +performance, ask the `run.py` script to put option `-Mx 1201` into the bash +script: + + ./run.py -e 1a --mode=3 --Mx=1201 > experiment-1a-mode-3.sh + +Then this is a 4 core run: + + bash experiment-1a-mode-3.sh 4 >& out.1a-mode-3 & + + +Technical details +----------------- + +The script `MISMIP.py` contains MISMIP parameters and the code needed to +compute the semi-analytic grounding line location and the corresponding +thickness profile for each experiment. + +The script `prepare.py` contains functions using `MISMIP.py` to generate +PISM-readable NetCDF files with semi-analytic ice thickness profiles, and +the prescribed accumulation map. It can be imported as a module or run +as a script to generate PISM bootstrapping files. + +The script `run.py` generates `bash` scripts performing MISMIP runs using +`MISMIP.py` and `prepare.py`. + +Implementation details +---------------------- + +We can turn PISM's default sliding law into MISMIP's power law by setting the +threshold speed to 1 meter per second, which will make it inactive. + +The `-pseudo_plastic_uthreshold` command-line option takes an argument in meters per year, so we use `-pseudo_plastic_uthreshold 3.15569259747e7`, where `3.15569259747e7` is the number of seconds in a year. + +The MISMIP parameter C corresponds to `tauc` in PISM. It can be set using `-yield_stress constant -tauc C`. + +The MISMIP power law exponent `m` corresponds to `-pseudo_plastic_q` in PISM. + +We use the `-config_override` option to set other MISMIP-specific parameters, such as ice softness, ice density and others. + +Note that PISM does not at this time implement the stopping criteria described in the MISMIP specification. Instead we use the maximum run lengths that are provided as an alternative. On the other hand, PISM's output files contain all the information necessary to compute the rate of change of the grounding line position and the thickness rate of change during post-processing. + +Post-processing +--------------- + +Converting PISM output files to ASCII files following MISMIP +specifications is left as an exercise. + +However, we do provide the `plot.py` script for visualization. + +It plots modeled ice flux as a function of the distance from the divide and the geometry profile. + +We see a discontinuity in the flux at the grounding +line. This is an issue in PISM that needs to be addressed to improve its +handling of the grounding line motion. For example, try + + ./plot.py ABC1_1a_M1_A1.nc -f -o flux.png + +Run `plot.py --help` for a list of command-line options. You can also produce plots for several PISM output files at once. For example, + + ./plot.py ABC*.nc + +will create geometry profile *and* ice flux plots for all matched files. + +Also, note that the variable `ice_area_glacierized_grounded` in `ts_ABC1_1a_M1_A1.nc` and similar +allows one to see time-dependent changes in the grounding line location +because grounded ice area is proportional to the distance from the divide to the +grounding line. diff --git a/flowlineslab.py b/flowlineslab.py @@ -0,0 +1,43 @@ +#!/usr/bin/env python3 + +# creates an example flowline data set "slab.nc" which can be used with +# flowline.py to show how to run PISM in flow-line mode + +# see the "Using PISM for flow-line modeling" subsection of the Users Manual + +# We recommend creating more metadata-rich datasets than is done here. +# Here we generate the bare minimum to work with flowline.py and PISM. + +from numpy import linspace, minimum, maximum, abs +import netCDF4 + +Lx = 1000e3 # 1000 km +Mx = 501 +topg_slope = -1e-4 +thk_0 = 1e3 # meters +climatic_mass_balance_0 = 0 # kg m-2 s-1 +ice_surface_temp_0 = -10 # Celsius + +nc = netCDF4.Dataset("slab.nc", 'w') +nc.createDimension('x', Mx) + +x = nc.createVariable('x', 'f4', ('x',)) +topg = nc.createVariable('topg', 'f4', ('x',)) +thk = nc.createVariable('thk', 'f4', ('x',)) +climatic_mass_balance = nc.createVariable('climatic_mass_balance', 'f4', ('x',)) +ice_surface_temp = nc.createVariable('ice_surface_temp', 'f4', ('x',)) + +x[:] = linspace(-Lx, Lx, Mx) +x.units = "m" +topg[:] = topg_slope * (x[:] - Lx) +topg.units = "m" + +thk[:] = maximum(minimum(5e3 - abs(x[:]) * 0.01, thk_0), 0) +thk.units = "m" + +climatic_mass_balance[:] = climatic_mass_balance_0 +climatic_mass_balance.units = "kg m-2 s-1" +ice_surface_temp[:] = ice_surface_temp_0 +ice_surface_temp.units = "Celsius" + +nc.close() diff --git a/pism_python.py b/pism_python.py @@ -0,0 +1,100 @@ +#!/usr/bin/env python3 + +# Copyright (C) 2009-2015, 2018 the PISM Authors + +# @package pism_python +# \author the PISM authors +# \brief Creates "from scratch" a boring dataset with the right format +# to use as a PISM bootstrapping file. +# \details Example use of Python for this purpose. +# +# Usage, including a minimal PISM call to bootstrap from this file: +# +# \verbatim $ pism_python.py # creates foo.nc \endverbatim +# \verbatim $ pismr -i foo.nc -bootstrap -Mx 41 -My 41 -Mz 21 -Lz 4000 -Mbz 5 -Lbz 500 -y 1 \endverbatim + +import sys +import time +import numpy as np + +# try different netCDF modules +try: + from netCDF4 import Dataset as CDF +except: + print("netCDF4 is not installed!") + sys.exit(1) + +# set up the grid: +Lx = 1e6 +Ly = 1e6 +Mx = 51 +My = 71 +x = np.linspace(-Lx, Lx, Mx) +y = np.linspace(-Ly, Ly, My) + +# create dummy fields +[xx, yy] = np.meshgrid(x, y) # if there were "ndgrid" in numpy we would use it +acab = np.zeros((Mx, My)) +artm = np.zeros((Mx, My)) + 273.15 + 10.0 # 10 degrees Celsius +topg = 1000.0 + 200.0 * (xx + yy) / max(Lx, Ly) # change "1000.0" to "0.0" to test +# flotation criterion, etc. +thk = 3000.0 * (1.0 - 3.0 * (xx ** 2 + yy ** 2) / Lx ** 2) +thk[thk < 0.0] = 0.0 + +# Output filename +ncfile = 'foo.nc' + +# Write the data: +nc = CDF(ncfile, "w", format='NETCDF3_CLASSIC') # for netCDF4 module + +# Create dimensions x and y +nc.createDimension("x", size=Mx) +nc.createDimension("y", size=My) + +x_var = nc.createVariable("x", 'f4', dimensions=("x",)) +x_var.units = "m" +x_var.long_name = "easting" +x_var.standard_name = "projection_x_coordinate" +x_var[:] = x + +y_var = nc.createVariable("y", 'f4', dimensions=("y",)) +y_var.units = "m" +y_var.long_name = "northing" +y_var.standard_name = "projection_y_coordinate" +y_var[:] = y + +fill_value = np.nan + + +def def_var(nc, name, units, fillvalue): + # dimension transpose is standard: "float thk(y, x)" in NetCDF file + var = nc.createVariable(name, 'f', dimensions=("y", "x"), fill_value=fillvalue) + var.units = units + return var + + +bed_var = def_var(nc, "topg", "m", fill_value) +bed_var.standard_name = "bedrock_altitude" +bed_var[:] = topg + +thk_var = def_var(nc, "thk", "m", fill_value) +thk_var.standard_name = "land_ice_thickness" +thk_var[:] = thk + +acab_var = def_var(nc, "climatic_mass_balance", "m year-1", fill_value) +acab_var.standard_name = "land_ice_surface_specific_mass_balance" +acab_var[:] = acab + +artm_var = def_var(nc, "ice_surface_temp", "K", fill_value) +artm_var[:] = artm + +# set global attributes +nc.Conventions = "CF-1.4" +historysep = ' ' +historystr = time.asctime() + ': ' + historysep.join(sys.argv) + '\n' +setattr(nc, 'history', historystr) + +nc.close() +print(' PISM-bootable NetCDF file %s written' % ncfile) +print(' for example, run:') +print(' $ pismr -i foo.nc -bootstrap -Mx 41 -My 41 -Mz 21 -Lz 4000 -Mbz 5 -Lbz 500 -y 1') diff --git a/plot.py b/plot.py @@ -0,0 +1,236 @@ +#!/usr/bin/env python3 + +import MISMIP + +from pylab import figure, subplot, plot, xlabel, ylabel, title, axis, vlines, savefig, text, tight_layout +from sys import exit + +import numpy as np +from optparse import OptionParser +import os.path + +try: + from netCDF4 import Dataset as NC +except: + print("netCDF4 is not installed!") + sys.exit(1) + + +def parse_filename(filename, opts): + "Get MISMIP info from a file name." + tokens = filename.split('_') + if tokens[0] == "ex": + tokens = tokens[1:] + + try: + model = tokens[0] + experiment = tokens[1] + mode = int(tokens[2][1]) + step = int(tokens[3][1]) + + except: + if opts.experiment is None: + print("Please specify the experiment name (e.g. '-e 1a').") + exit(0) + else: + experiment = opts.experiment + + if opts.step is None: + print("Please specify the step (e.g. '-s 1').") + exit(0) + else: + step = opts.step + + if opts.model is None: + print("Please specify the model name (e.g. '-m ABC1').") + exit(0) + else: + model = opts.model + + try: + nc = NC(filename) + x = nc.variables['x'][:] + N = (x.size - 1) / 2 + if N == 150: + mode = 1 + elif N == 1500: + mode = 2 + else: + mode = 3 + except: + mode = 3 + + return model, experiment, mode, step + + +def process_options(): + "Process command-line options and arguments." + parser = OptionParser() + parser.usage = "%prog <input files> [options]" + parser.description = "Plots the ice flux as a function of the distance from the divide." + parser.add_option("-o", "--output", dest="output", type="string", + help="Output image file name (e.g. -o foo.png)") + parser.add_option("-e", "--experiment", dest="experiment", type="string", + help="MISMIP experiment: 1a,1b,2a,2b,3a,3b (e.g. -e 1a)") + parser.add_option("-s", "--step", dest="step", type="int", + help="MISMIP step: 1,2,3,... (e.g. -s 1)") + parser.add_option("-m", "--model", dest="model", type="string", + help="MISMIP model (e.g. -M ABC1)") + parser.add_option("-f", "--flux", dest="profile", action="store_false", default=True, + help="Plot ice flux only") + parser.add_option("-p", "--profile", dest="flux", action="store_false", default=True, + help="Plot geometry profile only") + + opts, args = parser.parse_args() + + if len(args) == 0: + print("ERROR: An input file is requied.") + exit(0) + + if len(args) > 1 and opts.output: + print("More than one input file given. Ignoring the -o option...\n") + opts.output = None + + if opts.output and opts.profile and opts.flux: + print("Please choose between flux (-f) and profile (-p) plots.") + exit(0) + + return args, opts.output, opts + + +def read(filename, name): + "Read a variable and extract the middle row." + nc = NC(filename) + + try: + var = nc.variables[name][:] + except: + print("ERROR: Variable '%s' not present in '%s'" % (name, filename)) + exit(1) + + N = len(var.shape) + if N == 1: + return var[:] # a coordinate variable ('x') + elif N == 2: + return var[1] # get the middle row + elif N == 3: + return var[-1, 1] # get the middle row of the last record + else: + raise Exception("Can't read %s. (It's %d-dimensional.)" % (name, N)) + + +def find_grounding_line(x, topg, thk, mask): + "Find the modeled grounding line position." + # "positive" parts of x, topg, thk, mask + topg = topg[x > 0] + thk = thk[x > 0] + mask = mask[x > 0] + x = x[x > 0] # this should go last + + def f(j): + "See equation (7) in Pattyn et al, 'Role of transition zones in marine ice sheet dynamics', 2005." + z_sl = 0 + return (z_sl - topg[j]) * MISMIP.rho_w() / (MISMIP.rho_i() * thk[j]) + + for j in range(x.size): + if mask[j] == 2 and mask[j + 1] == 3: # j is grounded, j+1 floating + nabla_f = (f(j + 1) - f(j)) / (x[j + 1] - x[j]) + + # See equation (8) in Pattyn et al + return (1.0 - f(j) + nabla_f * x[j]) / nabla_f + + raise Exception("Can't find the grounding line") + + +def plot_profile(in_file, out_file): + print("Reading %s to plot geometry profile for model %s, experiment %s, grid mode %s, step %s" % ( + in_file, model, experiment, mode, step)) + + if out_file is None: + out_file = os.path.splitext(in_file)[0] + "-profile.pdf" + + mask = read(in_file, 'mask') + usurf = read(in_file, 'usurf') + topg = read(in_file, 'topg') + thk = read(in_file, 'thk') + x = read(in_file, 'x') + + # theoretical grounding line position + xg = MISMIP.x_g(experiment, step) + # modeled grounding line position + xg_PISM = find_grounding_line(x, topg, thk, mask) + + # mask out ice-free areas + usurf = np.ma.array(usurf, mask=mask == 4) + + # compute the lower surface elevation + lsrf = topg.copy() + lsrf[mask == 3] = -MISMIP.rho_i() / MISMIP.rho_w() * thk[mask == 3] + lsrf = np.ma.array(lsrf, mask=mask == 4) + + # convert x to kilometers + x /= 1e3 + + figure(1) + ax = subplot(111) + plot(x, np.zeros_like(x), ls='dotted', color='red') + plot(x, topg, color='black') + plot(x, usurf, 'o', color='blue', markersize=4) + plot(x, lsrf, 'o', color='blue', markersize=4) + xlabel('distance from the divide, km') + ylabel('elevation, m') + title("MISMIP experiment %s, step %d" % (experiment, step)) + text(0.6, 0.9, "$x_g$ (model) = %4.0f km" % (xg_PISM / 1e3), color='r', + transform=ax.transAxes) + text(0.6, 0.85, "$x_g$ (theory) = %4.0f km" % (xg / 1e3), color='black', + transform=ax.transAxes) + + #_, _, ymin, ymax = axis(xmin=0, xmax=x.max()) + _, _, ymin, ymax = axis(xmin=x.min(), xmax=x.max()) + + vlines(xg / 1e3, ymin, ymax, linestyles='dashed', color='black') + vlines(xg_PISM / 1e3, ymin, ymax, linestyles='dashed', color='red') + + print("Saving '%s'...\n" % out_file) + savefig(out_file) + + +def plot_flux(in_file, out_file): + print("Reading %s to plot ice flux for model %s, experiment %s, grid mode %s, step %s" % ( + in_file, model, experiment, mode, step)) + + if out_file is None: + out_file = os.path.splitext(in_file)[0] + "-flux.pdf" + + x = read(in_file, 'x') + flux_mag = read(in_file, 'flux_mag') + + # plot positive xs only + flux_mag = flux_mag[x >= 0] + x = x[x >= 0] + + figure(2) + + plot(x / 1e3, flux_mag, 'k.-', markersize=10, linewidth=2) + plot(x / 1e3, x * MISMIP.a() * MISMIP.secpera(), 'r:', linewidth=1.5) + + title("MISMIP experiment %s, step %d" % (experiment, step)) + xlabel("x ($\mathrm{km}$)", size=14) + ylabel(r"flux ($\mathrm{m}^2\,\mathrm{a}^{-1}$)", size=14) + + tight_layout() + print("Saving '%s'...\n" % out_file) + savefig(out_file, dpi=300, facecolor='w', edgecolor='w') + + +if __name__ == "__main__": + args, out_file, opts = process_options() + + for in_file in args: + model, experiment, mode, step = parse_filename(in_file, opts) + + if opts.profile: + plot_profile(in_file, out_file) + + if opts.flux: + plot_flux(in_file, out_file) diff --git a/prepare.py b/prepare.py @@ -0,0 +1,171 @@ +#!/usr/bin/env python3 + +try: + from netCDF4 import Dataset as NC +except: + print("netCDF4 is not installed!") + sys.exit(1) + +import MISMIP + +import numpy as np + + +def bed_topography(experiment, x): + """Computes bed elevation as a function of x. + experiment can be '1a', '1b', '2a', '2b', '3a', '3b'. + """ + + return np.tile(-MISMIP.b(experiment, np.abs(x)), (3, 1)) + + +def surface_mass_balance(x): + """Computes the surface mass balance.""" + return np.tile(np.zeros_like(x) + MISMIP.a(), (3, 1)) * MISMIP.rho_i() + + +def ice_surface_temp(x): + """Computes the ice surface temperature (irrelevant).""" + return np.tile(np.zeros_like(x) + 273.15, (3, 1)) + + +def x(mismip_mode, N=None): + if mismip_mode in (1, 2): + return np.linspace(-MISMIP.L(), MISMIP.L(), 2 * MISMIP.N(mismip_mode) + 1) + + return np.linspace(-MISMIP.L(), MISMIP.L(), N) + + +def y(x): + """Computes y coordinates giving the 1:1 aspect ratio. + Takes cross-flow grid periodicity into account.""" + dx = x[1] - x[0] + dy = dx + return np.array([-dy, 0, dy]) + + +def thickness(experiment, step, x, calving_front=1750e3, semianalytical_profile=True): + + # we expect x to have an odd number of grid points so that one of them is + # at 0 + if x.size % 2 != 1: + raise ValueError("x has to have an odd number of points, got %d", x.size) + + x_nonnegative = x[x >= 0] + if not semianalytical_profile: + thk_nonnegative = np.zeros_like(x_nonnegative) + 10 + else: + thk_nonnegative = MISMIP.thickness(experiment, step, x_nonnegative) + + thk_nonnegative[x_nonnegative > calving_front] = 0 + + thk = np.zeros_like(x) + thk[x >= 0] = thk_nonnegative + thk[x < 0] = thk_nonnegative[:0:-1] + + return np.tile(thk, (3, 1)) + + +def pism_bootstrap_file(filename, experiment, step, mode, + calving_front=1750e3, N=None, semianalytical_profile=True): + import PISMNC + + xx = x(mode, N) + yy = y(xx) + + bed_elevation = bed_topography(experiment, xx) + ice_thickness = thickness(experiment, step, xx, calving_front, semianalytical_profile) + ice_surface_mass_balance = surface_mass_balance(xx) + ice_surface_temperature = ice_surface_temp(xx) + + ice_extent = np.zeros_like(ice_thickness) + ice_extent[ice_thickness > 0] = 1 + ice_extent[bed_elevation > 0] = 1 + + nc = PISMNC.PISMDataset(filename, 'w', format="NETCDF3_CLASSIC") + + nc.create_dimensions(xx, yy) + + nc.define_2d_field('topg', + attrs={'units': 'm', + 'long_name': 'bedrock surface elevation', + 'standard_name': 'bedrock_altitude'}) + nc.write('topg', bed_elevation) + + nc.define_2d_field('thk', + attrs={'units': 'm', + 'long_name': 'ice thickness', + 'standard_name': 'land_ice_thickness'}) + nc.write('thk', ice_thickness) + + nc.define_2d_field('climatic_mass_balance', + attrs={'units': 'kg m-2 / s', + 'long_name': 'ice-equivalent surface mass balance (accumulation/ablation) rate', + 'standard_name': 'land_ice_surface_specific_mass_balance_flux'}) + nc.write('climatic_mass_balance', ice_surface_mass_balance) + + nc.define_2d_field('ice_surface_temp', + attrs={'units': 'Kelvin', + 'long_name': 'annual average ice surface temperature, below firn processes'}) + nc.write('ice_surface_temp', ice_surface_temperature) + + nc.define_2d_field('land_ice_area_fraction_retreat', + attrs={'units': '1', + 'long_name': 'mask defining the maximum ice extent'}) + nc.write('land_ice_area_fraction_retreat', ice_extent) + + nc.close() + + +if __name__ == "__main__": + + from optparse import OptionParser + + parser = OptionParser() + + parser.usage = "%prog [options]" + parser.description = "Creates a MISMIP boostrapping file for use with PISM." + parser.add_option("-o", dest="output_filename", + help="output file") + parser.add_option("-e", "--experiment", dest="experiment", type="string", + help="MISMIP experiment (one of '1a', '1b', '2a', '2b', '3a', '3b')", + default="1a") + parser.add_option("-s", "--step", dest="step", type="int", default=1, + help="MISMIP step") + parser.add_option("-u", "--uniform_thickness", + action="store_false", dest="semianalytical_profile", default=True, + help="Use uniform 10 m ice thickness") + parser.add_option("-m", "--mode", dest="mode", type="int", default=2, + help="MISMIP grid mode") + parser.add_option("-N", dest="N", type="int", default=3601, + help="Custom grid size; use with --mode=3") + parser.add_option("-c", dest="calving_front", type="float", default=1600e3, + help="Calving front location, in meters (e.g. 1600e3)") + + (opts, args) = parser.parse_args() + + experiments = ('1a', '1b', '2a', '2b', '3a', '3b') + if opts.experiment not in experiments: + print("Invalid experiment %s. Has to be one of %s." % ( + opts.experiment, experiments)) + exit(1) + + if not opts.output_filename: + output_filename = "MISMIP_%s_%d_%d.nc" % (opts.experiment, + opts.step, + opts.mode) + else: + output_filename = opts.output_filename + + print("Creating MISMIP setup for experiment %s, step %s, grid mode %d in %s..." % ( + opts.experiment, opts.step, opts.mode, output_filename)) + + pism_bootstrap_file(output_filename, + opts.experiment, + opts.step, + opts.mode, + calving_front=opts.calving_front, + N=opts.N, + semianalytical_profile=opts.semianalytical_profile) + + print("done.") diff --git a/run.py b/run.py @@ -0,0 +1,392 @@ +#!/usr/bin/env python3 +import MISMIP + +# This scripts generates bash scripts that run MISMIP experiments and generates +# all the necessary input files. +# +# Run run.py > my_new_mismip.sh and use that. + +try: + from netCDF4 import Dataset as NC +except: + print("netCDF4 is not installed!") + sys.exit(1) + +import sys + +# The "standard" preamble used in many PISM scripts: +preamble = ''' +if [ -n "${SCRIPTNAME:+1}" ] ; then + echo "[SCRIPTNAME=$SCRIPTNAME (already set)]" + echo "" +else + SCRIPTNAME="#(mismip.sh)" +fi + +echo +echo "# ==================================================================================" +echo "# MISMIP experiments" +echo "# ==================================================================================" +echo + +set -e # exit on error + +NN=2 # default number of processors +if [ $# -gt 0 ] ; then # if user says "mismip.sh 8" then NN = 8 + NN="$1" +fi + +echo "$SCRIPTNAME NN = $NN" + +# set MPIDO if using different MPI execution command, for example: +# $ export PISM_MPIDO="aprun -n " +if [ -n "${PISM_MPIDO:+1}" ] ; then # check if env var is already set + echo "$SCRIPTNAME PISM_MPIDO = $PISM_MPIDO (already set)" +else + PISM_MPIDO="mpiexec -n " + echo "$SCRIPTNAME PISM_MPIDO = $PISM_MPIDO" +fi + +# check if env var PISM_DO was set (i.e. PISM_DO=echo for a 'dry' run) +if [ -n "${PISM_DO:+1}" ] ; then # check if env var DO is already set + echo "$SCRIPTNAME PISM_DO = $PISM_DO (already set)" +else + PISM_DO="" +fi + +# prefix to pism (not to executables) +if [ -n "${PISM_BIN:+1}" ] ; then # check if env var is already set + echo "$SCRIPTNAME PISM_BIN = $PISM_BIN (already set)" +else + PISM_BIN="" # just a guess + echo "$SCRIPTNAME PISM_BIN = $PISM_BIN" +fi +''' + + +class Experiment: + + "A MISMIP experiment." + experiment = "" + mode = 1 + model = 1 + semianalytic = True + Mx = 151 + My = 3 + Mz = 15 + initials = "ABC" + executable = "$PISM_DO $PISM_MPIDO $NN ${PISM_BIN}pismr" + + def __init__(self, experiment, model=1, mode=1, Mx=None, Mz=15, semianalytic=True, + initials="ABC", executable=None): + self.model = model + self.mode = mode + self.experiment = experiment + self.initials = initials + self.semianalytic = semianalytic + + if executable: + self.executable = executable + + if mode == 3: + self.Mx = Mx + else: + self.Mx = 2 * MISMIP.N(self.mode) + 1 + + self.My = 3 + + if self.experiment == "2b": + self.Lz = 7000 + else: + self.Lz = 6000 + self.Lz *= 2.0 + + def physics_options(self, input_file, step): + "Options corresponding to modeling choices." + config_filename = self.config(step) + + #options = ["-energy none", # isothermal setup; allows selecting cold-mode flow laws + #"-ssa_flow_law isothermal_glen", # isothermal setup + #"-yield_stress constant", + #"-tauc %e" % MISMIP.C(self.experiment), + #"-pseudo_plastic", + #"-gradient eta", + #"-pseudo_plastic_q %e" % MISMIP.m(self.experiment), + #"-pseudo_plastic_uthreshold %e" % MISMIP.secpera(), + #"-front_retreat_file %s" % input_file, # prescribe the maximum ice extent + #"-config_override %s" % config_filename, + #"-ssa_method fd", + #"-cfbc", # calving front boundary conditions + #"-part_grid", # sub-grid front motion parameterization + #"-ssafd_ksp_rtol 1e-7", + #"-ys 0", + #"-ye %d" % MISMIP.run_length(self.experiment, step), + #"-options_left", + #] + + + options = ["-stress_balance ssa+sia", + #"-ssa_flow_law isothermal_glen", # isothermal setup + #"-yield_stress constant", + #"-tauc %e" % MISMIP.C(self.experiment), + #"-pseudo_plastic", + "-gradient eta", + #"-pseudo_plastic_q %e" % MISMIP.m(self.experiment), + #"-pseudo_plastic_uthreshold %e" % MISMIP.secpera(), + #"-yield_stress mohr_coulomb", + #"-till_flux", + "-front_retreat_file %s" % input_file, # prescribe the maximum ice extent + "-config_override %s" % config_filename, + #"-ssa_method fd", + "-cfbc", # PIK: calving front boundary conditions + "-part_grid", # PIK: sub-grid front motion parameterization + "-kill_icebergs", # PIK: https://pism-docs.org/sphinx/manual/modeling-choices/marine/pik.html#iceberg-removal + "-subgl", # PIK: https://pism-docs.org/sphinx/manual/modeling-choices/marine/pik.html#sub-grid-treatment-of-the-grounding-line-position + #"-ssafd_ksp_rtol 1e-7", + "-ys 0", + "-ye 1e4", + "-options_left", + #"-hydrology routing", + "-plastic_phi 24", # Tulaczyk et al 2000 + "-till_cohesion 0", # Tulaczyk et al 2000 + #"-geothermal_flux 70e-3", # Feldmann and Levermann 2017 + "-sia_e 4.5", # Martin et al 2010 + "-ssa_e 0.512", # Martin et al 2010 + "-bed_def lc", # Lingle and Clark 1985, Bueler et al 2007 + "-stress_balance.sia.max_diffusivity 1e4", + ] + + + #options = [, + #"-yield_stress mohr_coulomb", + #"-Lz 1e4", + ##"-till_flux", + #"-cfbc", # calving front boundary conditions + #"-part_grid", # sub-grid front motion parameterization + #"-front_retreat_file %s" % input_file, # prescribe the maximum ice extent + #"-ys 0", + #"-ye %d" % MISMIP.run_length(self.experiment, step), + #"-options_left", + #] + + + #if self.model == 1: + #options.extend(["-stress_balance ssa"]) + #else: + #options.extend(["-stress_balance ssa+sia", + #"-sia_flow_law isothermal_glen", # isothermal setup + #]) + + + return options + + def config(self, step): + '''Generates a config file containing flags and parameters + for a particular experiment and step. + + This takes care of flags and parameters that *cannot* be set using + command-line options. (We try to use command-line options whenever we can.) + ''' + + filename = "MISMIP_conf_%s_A%s.nc" % (self.experiment, step) + + nc = NC(filename, 'w', format="NETCDF3_CLASSIC") + + var = nc.createVariable("pism_overrides", 'i') + + attrs = {"geometry.update.use_basal_melt_rate": "no", + "stress_balance.ssa.compute_surface_gradient_inward": "no", + "flow_law.isothermal_Glen.ice_softness": MISMIP.A(self.experiment, step), + "constants.ice.density": MISMIP.rho_i(), + "constants.sea_water.density": MISMIP.rho_w(), + "bootstrapping.defaults.geothermal_flux": 0.0, + "stress_balance.ssa.Glen_exponent": MISMIP.n(), + "constants.standard_gravity": MISMIP.g(), + "ocean.sub_shelf_heat_flux_into_ice": 0.0, + } + + if self.model != 1: + attrs["stress_balance.sia.bed_smoother.range"] = 0.0 + + for name, value in attrs.items(): + var.setncattr(name, value) + + nc.close() + + return filename + + def bootstrap_options(self, step): + boot_filename = "MISMIP_boot_%s_M%s_A%s.nc" % (self.experiment, self.mode, step) + + import prepare + prepare.pism_bootstrap_file(boot_filename, self.experiment, step, self.mode, N=self.Mx, + semianalytical_profile=self.semianalytic) + + options = ["-i %s -bootstrap" % boot_filename, + "-Mx %d" % self.Mx, + "-My %d" % self.My, + "-Mz %d" % self.Mz, + "-Lz %d" % self.Lz] + + return options, boot_filename + + def output_options(self, step): + output_file = self.output_filename(self.experiment, step) + extra_file = "ex_" + output_file + ts_file = "ts_" + output_file + + options = ["-extra_file %s" % extra_file, + "-extra_times 0:50:3e4", + "-extra_vars thk,topg,velbar_mag,flux_mag,mask,dHdt,usurf,hardav,velbase_mag,nuH,tauc,taud,taub,flux_divergence,cell_grounded_fraction", + "-ts_file %s" % ts_file, + "-ts_times 0:50:3e4", + #"-backup_size big", + "-backup_size big_2d", + "-o %s" % output_file, + "-o_order zyx", + ] + + return output_file, options + + def output_filename(self, experiment, step): + return "%s%s_%s_M%s_A%s.nc" % (self.initials, self.model, experiment, self.mode, step) + + def options(self, step, input_file=None): + '''Generates a string of PISM options corresponding to a MISMIP experiment.''' + + if input_file is None: + input_options, input_file = self.bootstrap_options(step) + else: + input_options = ["-i %s" % input_file] + + physics = self.physics_options(input_file, step) + + output_file, output_options = self.output_options(step) + + return output_file, (input_options + physics + output_options) + + def run_step(self, step, input_file=None): + out, opts = self.options(step, input_file) + print('echo "# Step %s-%s"' % (self.experiment, step)) + print("%s %s" % (self.executable, ' '.join(opts))) + print('echo "Done."\n') + + return out + + def run(self, step=None): + print('echo "# Experiment %s"' % self.experiment) + + if self.experiment in ('1a', '1b'): + # bootstrap + input_file = None + # steps 1 to 9 + steps = list(range(1, 10)) + + if self.experiment in ('2a', '2b'): + # start from step 9 of the corresponding experiment 1 + input_file = self.output_filename(self.experiment.replace("2", "1"), 9) + # steps 8 to 1 + steps = list(range(8, 0, -1)) + + if self.experiment == '3a': + # bootstrap + input_file = None + # steps 1 to 13 + steps = list(range(1, 14)) + + if self.experiment == '3b': + # bootstrap + input_file = None + # steps 1 to 15 + steps = list(range(1, 16)) + + if step is not None: + input_file = None + steps = [step] + + for step in steps: + input_file = self.run_step(step, input_file) + + +def run_mismip(initials, executable, semianalytic): + Mx = 601 + models = (1, 2) + modes = (1, 2, 3) + experiments = ('1a', '1b', '2a', '2b', '3a', '3b') + + print(preamble) + + for model in models: + for mode in modes: + for experiment in experiments: + e = Experiment(experiment, + initials=initials, + executable=executable, + model=model, mode=mode, Mx=Mx, + semianalytic=semianalytic) + e.run() + + +if __name__ == "__main__": + from optparse import OptionParser + + parser = OptionParser() + + parser.usage = "%prog [options]" + parser.description = "Creates a script running MISMIP experiments." + parser.add_option("--initials", dest="initials", type="string", + help="Initials (3 letters)", default="ABC") + parser.add_option("-e", "--experiment", dest="experiment", type="string", + default='1a', + help="MISMIP experiments (one of '1a', '1b', '2a', '2b', '3a', '3b')") + parser.add_option("-s", "--step", dest="step", type="int", + help="MISMIP step number") + parser.add_option("-u", "--uniform_thickness", + action="store_false", dest="semianalytic", default=True, + help="Use uniform 10 m ice thickness") + parser.add_option("-a", "--all", + action="store_true", dest="all", default=False, + help="Run all experiments") + parser.add_option("-m", "--mode", dest="mode", type="int", default=1, + help="MISMIP grid mode") + parser.add_option("--Mx", dest="Mx", type="int", default=601, + help="Custom grid size; use with --mode=3") + parser.add_option("--model", dest="model", type="int", default=1, + help="Models: 1 - SSA only; 2 - SIA+SSA") + parser.add_option("--executable", dest="executable", type="string", + help="Executable to run, e.g. 'mpiexec -n 4 pismr'") + + (opts, args) = parser.parse_args() + + if opts.all: + run_mismip(opts.initials, opts.executable, opts.semianalytic) + exit(0) + + def escape(arg): + if arg.find(" ") >= 0: + parts = arg.split("=") + return "%s=\"%s\"" % (parts[0], ' '.join(parts[1:])) + else: + return arg + + arg_list = [escape(a) for a in sys.argv] + + print("#!/bin/bash") + print("# This script was created by examples/mismip/run.py. The command was:") + print("# %s" % (' '.join(arg_list))) + + if opts.executable is None: + print(preamble) + + e = Experiment(opts.experiment, + initials=opts.initials, + executable=opts.executable, + model=opts.model, + mode=opts.mode, + Mx=opts.Mx, + semianalytic=opts.semianalytic) + + if opts.step is not None: + e.run(opts.step) + else: + e.run()