granular-channel-hydro

Subglacial hydrology model for sedimentary channels
git clone git://src.adamsgaard.dk/granular-channel-hydro
Log | Files | Refs | README | LICENSE

commit 4bb1e340b01ce37312e12942c05715d30529e2b0
parent ed3e36d656e883a7527ac866dad7e6d1ebffcf57
Author: Anders Damsgaard <andersd@riseup.net>
Date:   Wed, 19 Apr 2017 20:52:56 -0400

add seperate version with two-phase sediment transport model

Diffstat:
A1d-channel-wilcock-two-phase.py | 431+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 431 insertions(+), 0 deletions(-)

diff --git a/1d-channel-wilcock-two-phase.py b/1d-channel-wilcock-two-phase.py @@ -0,0 +1,431 @@ +#!/usr/bin/env python + +# # ABOUT THIS FILE +# The following script uses basic Python and Numpy functionality to solve the +# coupled systems of equations describing subglacial channel development in +# soft beds as presented in `Damsgaard et al. "Sediment plasticity controls +# channelization of subglacial meltwater in soft beds"`, submitted to Journal +# of Glaciology. +# +# High performance is not the goal for this implementation, which is instead +# intended as a heavily annotated example on the solution procedure without +# relying on solver libraries, suitable for low-level languages like C, Fortran +# or CUDA. +# +# License: Gnu Public License v3 +# Author: Anders Damsgaard, adamsgaard@ucsd.edu, https://adamsgaard.dk + +import numpy +import matplotlib.pyplot as plt +import sys + + +# # Model parameters +Ns = 25 # Number of nodes [-] +Ls = 1e3 # Model length [m] +total_days = 60. # Total simulation time [d] +t_end = 24.*60.*60.*total_days # Total simulation time [s] +tol_S = 1e-3 # Tolerance criteria for the norm. max. residual for Q +tol_Q = 1e-3 # Tolerance criteria for the norm. max. residual for Q +tol_N_c = 1e-3 # Tolerance criteria for the norm. max. residual for N_c +max_iter = 1e2*Ns # Maximum number of solver iterations before failure +print_output_convergence = False # Display convergence in nested loops +print_output_convergence_main = True # Display convergence in main loop +safety = 0.01 # Safety factor ]0;1] for adaptive timestepping +plot_interval = 20 # Time steps between plots +plot_during_iterations = False # Generate plots for intermediate results +#plot_during_iterations = True # Generate plots for intermediate results +speedup_factor = 1. # Speed up channel growth to reach steady state faster +#relax_dSdt = 0.3 # Relaxation parameter for channel growth rate ]0;1] +relax = 0.05 # Relaxation parameter for effective pressure ]0;1] + +# Physical parameters +rho_w = 1000. # Water density [kg/m^3] +rho_i = 910. # Ice density [kg/m^3] +rho_s = 2600. # Sediment density [kg/m^3] +g = 9.8 # Gravitational acceleration [m/s^2] +theta = 30. # Angle of internal friction in sediment [deg] +sand_fraction = 0.5 # Initial volumetric fraction of sand relative to gravel +D_g = 5e-3 # Mean grain size in gravel fraction (> 2 mm) [m] +D_s = 5e-4 # Mean grain size in sand fraction (<= 2 mm) [m] +#D_g = 1 +#D_g = 0.1 + +# Boundary conditions +P_terminus = 0. # Water pressure at terminus [Pa] +#m_dot = 3.5e-6 +m_dot = numpy.linspace(0., 3.5e-6, Ns-1) # Water source term [m/s] +Q_upstream = 1e-5 # Water influx upstream (must be larger than 0) [m^3/s] + +# Channel hydraulic properties +manning = 0.1 # Manning roughness coefficient [m^{-1/3} s] +friction_factor = 0.1 # Darcy-Weisbach friction factor [-] + +# Channel growth-limit parameters +c_1 = -0.118 # [m/kPa] +c_2 = 4.60 # [m] + +# Minimum channel size [m^2], must be bigger than 0 +S_min = 1e-2 +# S_min = 1e-1 +# S_min = 1. + + +# # Initialize model arrays +# Node positions, terminus at Ls +s = numpy.linspace(0., Ls, Ns) +ds = s[1:] - s[:-1] + +# Ice thickness [m] +H = 6.*(numpy.sqrt(Ls - s + 5e3) - numpy.sqrt(5e3)) + 1.0 +# slope = 0.1 # Surface slope [%] +# H = 1000. + -slope/100.*s + +# Bed topography [m] +b = numpy.zeros_like(H) + +N = H*0.1*rho_i*g # Initial effective stress [Pa] + +# Initialize arrays for channel segments between nodes +S = numpy.ones(len(s) - 1)*S_min # Cross-sect. area of channel segments[m^2] +S_max = numpy.zeros_like(S) # Max. channel size [m^2] +dSdt = numpy.zeros_like(S) # Transient in channel cross-sect. area [m^2/s] +W = S/numpy.tan(numpy.deg2rad(theta)) # Assuming no channel floor wedge +Q = numpy.zeros_like(S) # Water flux in channel segments [m^3/s] +Q_s = numpy.zeros_like(S) # Sediment flux in channel segments [m^3/s] +N_c = numpy.zeros_like(S) # Effective pressure in channel segments [Pa] +P_c = numpy.zeros_like(S) # Water pressure in channel segments [Pa] +tau = numpy.zeros_like(S) # Avg. shear stress from current [Pa] +porosity = numpy.ones_like(S)*0.3 # Sediment porosity [-] +res = numpy.zeros_like(S) # Solution residual during solver iterations +Q_t = numpy.zeros_like(S) # Total sediment flux [m3/s] +Q_s = numpy.zeros_like(S) # Sediment flux where D <= 2 mm [m3/s] +Q_g = numpy.zeros_like(S) # Sediment flux where D > 2 mm [m3/s] +f_s = numpy.ones_like(S)*sand_fraction # Initial sediment fraction of sand [-] + + +# # Helper functions +def gradient(arr, arr_x): + # Central difference gradient of an array ``arr`` with node positions at + # ``arr_x``. + return (arr[1:] - arr[:-1])/(arr_x[1:] - arr_x[:-1]) + + +def avg_midpoint(arr): + # Averaged value of neighboring array elements + return (arr[:-1] + arr[1:])/2. + + +def channel_hydraulic_roughness(manning, S, W, theta): + # Determine hydraulic roughness assuming that the channel has no channel + # floor wedge. + l = W + W/numpy.cos(numpy.deg2rad(theta)) # wetted perimeter + return manning**2.*(l**2./S)**(2./3.) + + +def channel_shear_stress(Q, S): + # Determine mean wall shear stress from Darcy-Weisbach friction loss + u_bar = Q/S + return 1./8.*friction_factor*rho_w*u_bar**2. + + +def channel_sediment_flux_sand(tau, W, f_s, D_s): + # Parker 1979, Wilcock 1997, 2001, Egholm 2013 + # tau: Shear stress by water flow + # W: Channel width + # f_s: Sand volume fraction + # D_s: Mean sand fraction grain size + + # Piecewise linear functions for nondimensional critical shear stresses + # dependent on sand fraction from Gasparini et al 1999 of Wilcock 1997 + # data. + ref_shear_stress = numpy.ones_like(f_s)*0.04 + ref_shear_stress[numpy.nonzero(f_s <= 0.1)] = 0.88 + I = numpy.nonzero((0.1 < f_s) & (f_s <= 0.4)) + ref_shear_stress[I] = 0.88 - 2.8*(f_s[I] - 0.1) + + # Non-dimensionalize shear stress + shields_stress = tau/((rho_s - rho_w)*g*D_s) + + # import ipdb; ipdb.set_trace() + Q_c = 11.2*f_s*W/((rho_s - rho_w)/rho_w*g) \ + * (tau/rho_w)**1.5 \ + * numpy.maximum(0.0, + (1.0 - 0.846*numpy.sqrt(ref_shear_stress/shields_stress)) + )**4.5 + + return Q_c + + +def channel_sediment_flux_gravel(tau, W, f_g, D_g): + # Parker 1979, Wilcock 1997, 2001, Egholm 2013 + # tau: Shear stress by water flow + # W: Channel width + # f_g: Gravel volume fraction + # D_g: Mean gravel fraction grain size + + # Piecewise linear functions for nondimensional critical shear stresses + # dependent on sand fraction from Gasparini et al 1999 of Wilcock 1997 + # data. + ref_shear_stress = numpy.ones_like(f_g)*0.01 + ref_shear_stress[numpy.nonzero(f_g <= 0.1)] = 0.04 + I = numpy.nonzero((0.1 < f_g) & (f_g <= 0.4)) + ref_shear_stress[I] = 0.04 - 0.1*(f_g[I] - 0.1) + + # Non-dimensionalize shear stress + shields_stress = tau/((rho_s - rho_w)*g*D_g) + + # From Wilcock 2001, eq. 3 + Q_g = 11.2*f_g*W/((rho_s - rho_w)/rho_w*g) \ + * (tau/rho_w)**1.5 \ + * numpy.maximum(0.0, + (1.0 - 0.846*ref_shear_stress/shields_stress))**4.5 + + # From Wilcock 2001, eq. 4 + I = numpy.nonzero(ref_shear_stress/shields_stress < 1.) + Q_g[I] = f_g[I]*W[I]/((rho_s - rho_w)/rho_w*g) \ + * (tau[I]/rho_w)**1.5 \ + * 0.0025*(shields_stress[I]/ref_shear_stress[I])**14.2 + + return Q_g + + +def channel_growth_rate_sedflux(Q_t, porosity, s_c): + # Damsgaard et al, in prep + return 1./porosity[1:] * gradient(Q_t, s_c) + + +def update_channel_size_with_limit(S, S_old, dSdt, dt, N_c): + # Damsgaard et al, in prep + S_max = numpy.maximum( + numpy.maximum( + 1./4.*(c_1*numpy.maximum(N_c, 0.)/1000. + c_2), 0.)**2. * + numpy.tan(numpy.deg2rad(theta)), S_min) + S = numpy.maximum(numpy.minimum(S_old + dSdt*dt, S_max), S_min) + W = S/numpy.tan(numpy.deg2rad(theta)) # Assume no channel floor wedge + dSdt = S - S_old # adjust dSdt for clipping due to channel size limits + return S, W, S_max, dSdt + + +def flux_solver(m_dot, ds): + # Iteratively find new water fluxes + it = 0 + max_res = 1e9 # arbitrary large value + + # Iteratively find solution, do not settle for less iterations than the + # number of nodes + while max_res > tol_Q: + + Q_old = Q.copy() + # dQ/ds = m_dot -> Q_out = m*delta(s) + Q_in + # Upwind information propagation (upwind) + Q[0] = Q_upstream + Q[1:] = m_dot[1:]*ds[1:] + Q[:-1] + max_res = numpy.max(numpy.abs((Q - Q_old)/(Q + 1e-16))) + + if print_output_convergence: + print('it = {}: max_res = {}'.format(it, max_res)) + + # import ipdb; ipdb.set_trace() + if it >= max_iter: + raise Exception('t = {}, step = {}: '.format(time, step) + + 'Iterative solution not found for Q') + it += 1 + + return Q + + +def pressure_solver(psi, f, Q, S): + # Iteratively find new water pressures + # dN_c/ds = f*rho_w*g*Q^2/S^{8/3} - psi (Kingslake and Ng 2013) + + it = 0 + max_res = 1e9 # arbitrary large value + while max_res > tol_N_c: + + N_c_old = N_c.copy() + + # Dirichlet BC (fixed pressure) at terminus + N_c[-1] = rho_i*g*H_c[-1] - P_terminus + + N_c[:-1] = N_c[1:] \ + + psi[:-1]*ds[:-1] \ + - f[:-1]*rho_w*g*Q[:-1]*numpy.abs(Q[:-1]) \ + /(S[:-1]**(8./3.))*ds[:-1] + + max_res = numpy.max(numpy.abs((N_c - N_c_old)/(N_c + 1e-16))) + + if print_output_convergence: + print('it = {}: max_res = {}'.format(it, max_res)) + + if it >= max_iter: + raise Exception('t = {}, step = {}:'.format(time, step) + + 'Iterative solution not found for N_c') + it += 1 + + return N_c + #return N_c_old*(1 - relax_N_c) + N_c*relax_N_c + + +def plot_state(step, time, S_, S_max_, title=True): + # Plot parameters along profile + fig = plt.gcf() + fig.set_size_inches(3.3*1.1, 3.3*1.1*1.5) + + ax_Pa = plt.subplot(3, 1, 1) # axis with Pascals as y-axis unit + ax_Pa.plot(s_c/1000., N_c/1e6, '-k', label='$N$') + ax_Pa.plot(s_c/1000., H_c*rho_i*g/1e6, '--r', label='$P_i$') + ax_Pa.plot(s_c/1000., P_c/1e6, ':y', label='$P_c$') + + ax_m3s = ax_Pa.twinx() # axis with m3/s as y-axis unit + ax_m3s.plot(s_c/1000., Q, '.-b', label='$Q$') + + if title: + plt.title('Day: {:.3}'.format(time/(60.*60.*24.))) + ax_Pa.legend(loc=2) + ax_m3s.legend(loc=4) + ax_Pa.set_ylabel('[MPa]') + ax_m3s.set_ylabel('[m$^3$/s]') + + ax_m3s_sed = plt.subplot(3, 1, 2, sharex=ax_Pa) + ax_m3s_sed.plot(s_c/1000., Q_t, '-', label='$Q_{total}$') + ax_m3s_sed.plot(s_c/1000., Q_s, ':', label='$Q_{sand}$') + ax_m3s_sed.plot(s_c/1000., Q_g, '--', label='$Q_{gravel}$') + ax_m3s_sed.set_ylabel('[m$^3$/s]') + ax_m3s_sed.legend(loc=2) + + ax_m2 = plt.subplot(3, 1, 3, sharex=ax_Pa) + ax_m2.plot(s_c/1000., S_, '-k', label='$S$') + ax_m2.plot(s_c/1000., S_max_, '--', color='#666666', label='$S_{max}$') + + ax_m2s = ax_m2.twinx() + ax_m2s.plot(s_c/1000., dSdt, ':', label='$dS/dt$') + + ax_m2.legend(loc=2) + ax_m2s.legend(loc=3) + ax_m2.set_xlabel('$s$ [km]') + ax_m2.set_ylabel('[m$^2$]') + ax_m2s.set_ylabel('[m$^2$/s]') + + ax_Pa.set_xlim([s.min()/1000., s.max()/1000.]) + + plt.setp(ax_Pa.get_xticklabels(), visible=False) + plt.tight_layout() + if step == -1: + plt.savefig('chan-0.init.pdf') + else: + plt.savefig('chan-' + str(step) + '.pdf') + plt.clf() + plt.close() + + +def find_new_timestep(ds, Q, Q_t, S): + # Determine the timestep using the Courant-Friedrichs-Lewy condition + dt = safety*numpy.minimum(60.*60.*24., + numpy.min(numpy.abs(ds/(Q*S),\ + ds/(Q_t*S)+1e-16))) + + if dt < 1.0: + raise Exception('Error: Time step less than 1 second at step ' + + '{}, time '.format(step) + + '{:.3} s/{:.3} d'.format(time, time/(60.*60.*24.))) + + return dt + + +def print_status_to_stdout(step, time, dt): + sys.stdout.write('\rstep = {}, '.format(step) + + 't = {:.2} s or {:.4} d, dt = {:.2} s ' + .format(time, time/(60.*60.*24.), dt)) + sys.stdout.flush() + +s_c = avg_midpoint(s) # Channel section midpoint coordinates [m] +H_c = avg_midpoint(H) + +# Water-pressure gradient from geometry [Pa/m] +psi = -rho_i*g*gradient(H, s) - (rho_w - rho_i)*g*gradient(b, s) + +# Prepare figure object for plotting during the simulation +fig = plt.figure('channel') +plot_state(-1, 0.0, S, S_max) + + +# # Time loop +time = 0. +step = 0 +while time <= t_end: + + # Determine time step length from water flux + dt = find_new_timestep(ds, Q, Q_t, S) + + # Display current simulation status + print_status_to_stdout(step, time, dt) + + it = 0 + + # Initialize the maximum normalized residual for S to an arbitrary large + # value + max_res = 1e9 + + S_old = S.copy() + # Iteratively find solution with the Jacobi relaxation method + while max_res > tol_S: + + S_prev_it = S.copy() + + # Find new water fluxes consistent with mass conservation and local + # meltwater production (m_dot) + Q = flux_solver(m_dot, ds) + + # Find average shear stress from water flux for each channel segment + tau = channel_shear_stress(Q, S) + + # Determine sediment fluxes for each size fraction + f_g = 1./f_s # gravel volume fraction is reciprocal to sand + Q_s = channel_sediment_flux_sand(tau, W, f_s, D_s) + Q_g = channel_sediment_flux_gravel(tau, W, f_g, D_g) + Q_t = Q_s + Q_g + + # Determine change in channel size for each channel segment. + # Use backward differences and assume dS/dt=0 in first segment. + dSdt[1:] = channel_growth_rate_sedflux(Q_t, porosity, s_c) + #dSdt *= speedup_factor * relax + + # Update channel cross-sectional area and width according to growth + # rate and size limit for each channel segment + #S_prev = S.copy() + S, W, S_max, dSdt = \ + update_channel_size_with_limit(S, S_old, dSdt, dt, N_c) + #S = S_prev*(1.0 - relax) + S*relax + + + # Find hydraulic roughness + f = channel_hydraulic_roughness(manning, S, W, theta) + + # Find new water pressures consistent with the flow law + N_c = pressure_solver(psi, f, Q, S) + + # Find new effective pressure in channel segments + P_c = rho_i*g*H_c - N_c + + if plot_during_iterations: + plot_state(step + it/1e4, time, S, S_max) + + # Find new maximum normalized residual value + max_res = numpy.max(numpy.abs((S - S_prev_it)/(S + 1e-16))) + if print_output_convergence_main: + print('it = {}: max_res = {}'.format(it, max_res)) + + #import ipdb; ipdb.set_trace() + if it >= max_iter: + raise Exception('t = {}, step = {}: '.format(time, step) + + 'Iterative solution not found') + it += 1 + + # Generate an output figure for every n time steps + if step % plot_interval == 0: + plot_state(step, time, S, S_max) + + # Update time + time += dt + step += 1