granular-channel-hydro

Subglacial hydrology model for sedimentary channels
git clone git://src.adamsgaard.dk/granular-channel-hydro
Log | Files | Refs | README | LICENSE

commit 6afcc6591b23c355ae2cae50953afbba1de9e0d6
parent 4bb1e340b01ce37312e12942c05715d30529e2b0
Author: Anders Damsgaard <andersd@riseup.net>
Date:   Mon, 15 May 2017 16:11:43 -0400

implement Meyer-Peter and Muller 1948 relationship for sediment transport

Diffstat:
M1d-channel.py | 141++++++++++++++++++++++++-------------------------------------------------------
1 file changed, 43 insertions(+), 98 deletions(-)

diff --git a/1d-channel.py b/1d-channel.py @@ -13,7 +13,7 @@ # or CUDA. # # License: Gnu Public License v3 -# Author: Anders Damsgaard, adamsgaard@ucsd.edu, https://adamsgaard.dk +# Author: Anders Damsgaard, andersd@princeton.edu, https://adamsgaard.dk import numpy import matplotlib.pyplot as plt @@ -22,9 +22,10 @@ import sys # # Model parameters Ns = 25 # Number of nodes [-] -Ls = 10e3 # Model length [m] +Ls = 1e3 # Model length [m] total_days = 60. # Total simulation time [d] t_end = 24.*60.*60.*total_days # Total simulation time [s] +tol_S = 1e-3 # Tolerance criteria for the norm. max. residual for Q tol_Q = 1e-3 # Tolerance criteria for the norm. max. residual for Q tol_N_c = 1e-3 # Tolerance criteria for the norm. max. residual for N_c max_iter = 1e2*Ns # Maximum number of solver iterations before failure @@ -32,7 +33,9 @@ print_output_convergence = False # Display convergence in nested loops print_output_convergence_main = True # Display convergence in main loop safety = 0.01 # Safety factor ]0;1] for adaptive timestepping plot_interval = 20 # Time steps between plots +plot_during_iterations = False # Generate plots for intermediate results speedup_factor = 1. # Speed up channel growth to reach steady state faster +# relax = 0.05 # Relaxation parameter for effective pressure ]0;1] # Physical parameters rho_w = 1000. # Water density [kg/m^3] @@ -40,15 +43,12 @@ rho_i = 910. # Ice density [kg/m^3] rho_s = 2600. # Sediment density [kg/m^3] g = 9.8 # Gravitational acceleration [m/s^2] theta = 30. # Angle of internal friction in sediment [deg] -sand_fraction = 0.5 # Initial volumetric fraction of sand relative to gravel -D_g = 5e-3 # Mean grain size in gravel fraction (> 2 mm) [m] -D_s = 5e-4 # Mean grain size in sand fraction (<= 2 mm) [m] -#D_g = 1 -#D_g = 0.1 +D = 1.15e-3 # Mean grain size [m], Lajeuness et al 2010, series 1 +tau_c = 0.016 # Critical Shields stress, Lajeunesse et al 2010, series 1 # Boundary conditions P_terminus = 0. # Water pressure at terminus [Pa] -m_dot = 1e-6 # Water source term [m/s] +m_dot = numpy.linspace(0., 1e-5, Ns-1) # Water source term [m/s] Q_upstream = 1e-5 # Water influx upstream (must be larger than 0) [m^3/s] # Channel hydraulic properties @@ -61,8 +61,6 @@ c_2 = 4.60 # [m] # Minimum channel size [m^2], must be bigger than 0 S_min = 1e-2 -# S_min = 1e-1 -# S_min = 1. # # Initialize model arrays @@ -81,7 +79,7 @@ b = numpy.zeros_like(H) N = H*0.1*rho_i*g # Initial effective stress [Pa] # Initialize arrays for channel segments between nodes -S = numpy.ones(len(s) - 1)*S_min # Cross-sect. area of channel segments[m^2] +S = numpy.ones(len(s) - 1)*0.1 # Cross-sect. area of channel segments [m^2] S_max = numpy.zeros_like(S) # Max. channel size [m^2] dSdt = numpy.zeros_like(S) # Transient in channel cross-sect. area [m^2/s] W = S/numpy.tan(numpy.deg2rad(theta)) # Assuming no channel floor wedge @@ -92,10 +90,6 @@ P_c = numpy.zeros_like(S) # Water pressure in channel segments [Pa] tau = numpy.zeros_like(S) # Avg. shear stress from current [Pa] porosity = numpy.ones_like(S)*0.3 # Sediment porosity [-] res = numpy.zeros_like(S) # Solution residual during solver iterations -Q_t = numpy.zeros_like(S) # Total sediment flux [m3/s] -Q_s = numpy.zeros_like(S) # Sediment flux where D <= 2 mm [m3/s] -Q_g = numpy.zeros_like(S) # Sediment flux where D > 2 mm [m3/s] -f_s = numpy.ones_like(S)*sand_fraction # Initial sediment fraction of sand [-] # # Helper functions @@ -123,75 +117,23 @@ def channel_shear_stress(Q, S): return 1./8.*friction_factor*rho_w*u_bar**2. -def channel_sediment_flux_sand(tau, W, f_s, D_s): - # Parker 1979, Wilcock 1997, 2001, Egholm 2013 +def channel_sediment_flux(tau, W): + # Meyer-Peter and Mueller 1948 # tau: Shear stress by water flow # W: Channel width - # f_s: Sand volume fraction - # D_s: Mean sand fraction grain size - - # Piecewise linear functions for nondimensional critical shear stresses - # dependent on sand fraction from Gasparini et al 1999 of Wilcock 1997 - # data. - ref_shear_stress = numpy.ones_like(f_s)*0.04 - ref_shear_stress[numpy.nonzero(f_s <= 0.1)] = 0.88 - I = numpy.nonzero((0.1 < f_s) & (f_s <= 0.4)) - ref_shear_stress[I] = 0.88 - 2.8*(f_s[I] - 0.1) - - # Non-dimensionalize shear stress - shields_stress = tau/((rho_s - rho_w)*g*D_s) - - # import ipdb; ipdb.set_trace() - Q_c = 11.2*f_s*W/((rho_s - rho_w)/rho_w*g) \ - * (tau/rho_w)**1.5 \ - * numpy.maximum(0.0, - (1.0 - 0.846*numpy.sqrt(ref_shear_stress/shields_stress)) - )**4.5 - - return Q_c - - -def channel_sediment_flux_gravel(tau, W, f_g, D_g): - # Parker 1979, Wilcock 1997, 2001, Egholm 2013 - # tau: Shear stress by water flow - # W: Channel width - # f_g: Gravel volume fraction - # D_g: Mean gravel fraction grain size - - # Piecewise linear functions for nondimensional critical shear stresses - # dependent on sand fraction from Gasparini et al 1999 of Wilcock 1997 - # data. - ref_shear_stress = numpy.ones_like(f_g)*0.01 - ref_shear_stress[numpy.nonzero(f_g <= 0.1)] = 0.04 - I = numpy.nonzero((0.1 < f_g) & (f_g <= 0.4)) - ref_shear_stress[I] = 0.04 - 0.1*(f_g[I] - 0.1) # Non-dimensionalize shear stress - shields_stress = tau/((rho_s - rho_w)*g*D_g) - - # From Wilcock 2001, eq. 3 - Q_g = 11.2*f_g*W/((rho_s - rho_w)/rho_w*g) \ - * (tau/rho_w)**1.5 \ - * numpy.maximum(0.0, - (1.0 - 0.846*ref_shear_stress/shields_stress))**4.5 - - # From Wilcock 2001, eq. 4 - I = numpy.nonzero(ref_shear_stress/shields_stress < 1.) - Q_g[I] = f_g[I]*W[I]/((rho_s - rho_w)/rho_w*g) \ - * (tau[I]/rho_w)**1.5 \ - * 0.0025*(shields_stress[I]/ref_shear_stress[I])**14.2 + shields_stress = tau/((rho_s - rho_w)*g*D) - return Q_g + stress_excess = shields_stress - tau_c + stress_excess[stress_excess < 0.] = 0. + return 8.*stress_excess**(3./2.)*W \ + * numpy.sqrt((rho_s - rho_w)/rho_w*g*D**3.) -def channel_growth_rate(e_dot, d_dot, W): +def channel_growth_rate_sedflux(Q_s, porosity, s_c): # Damsgaard et al, in prep - return (e_dot - d_dot)*W - - -def channel_growth_rate_sedflux(Q_t, porosity, s_c): - # Damsgaard et al, in prep - return 1./porosity[1:] * gradient(Q_t, s_c) + return 1./porosity[1:] * gradient(Q_s, s_c) def update_channel_size_with_limit(S, S_old, dSdt, dt, N_c): @@ -213,13 +155,13 @@ def flux_solver(m_dot, ds): # Iteratively find solution, do not settle for less iterations than the # number of nodes - while max_res > tol_Q or it < Ns: + while max_res > tol_Q: Q_old = Q.copy() # dQ/ds = m_dot -> Q_out = m*delta(s) + Q_in # Upwind information propagation (upwind) Q[0] = Q_upstream - Q[1:] = m_dot*ds[1:] + Q[:-1] + Q[1:] = m_dot[1:]*ds[1:] + Q[:-1] max_res = numpy.max(numpy.abs((Q - Q_old)/(Q + 1e-16))) if print_output_convergence: @@ -240,7 +182,7 @@ def pressure_solver(psi, f, Q, S): it = 0 max_res = 1e9 # arbitrary large value - while max_res > tol_N_c or it < Ns: + while max_res > tol_N_c: N_c_old = N_c.copy() @@ -250,7 +192,7 @@ def pressure_solver(psi, f, Q, S): N_c[:-1] = N_c[1:] \ + psi[:-1]*ds[:-1] \ - f[:-1]*rho_w*g*Q[:-1]*numpy.abs(Q[:-1]) \ - /(S[:-1]**(8./3.))*ds[:-1] + / (S[:-1]**(8./3.))*ds[:-1] max_res = numpy.max(numpy.abs((N_c - N_c_old)/(N_c + 1e-16))) @@ -263,6 +205,7 @@ def pressure_solver(psi, f, Q, S): it += 1 return N_c + # return N_c_old*(1 - relax_N_c) + N_c*relax_N_c def plot_state(step, time, S_, S_max_, title=True): @@ -286,9 +229,7 @@ def plot_state(step, time, S_, S_max_, title=True): ax_m3s.set_ylabel('[m$^3$/s]') ax_m3s_sed = plt.subplot(3, 1, 2, sharex=ax_Pa) - ax_m3s_sed.plot(s_c/1000., Q_g, ':', label='$Q_{gravel}$') - ax_m3s_sed.plot(s_c/1000., Q_s, '-', label='$Q_{sand}$') - ax_m3s_sed.plot(s_c/1000., Q_t, '--', label='$Q_{total}$') + ax_m3s_sed.plot(s_c/1000., Q_s, '-', label='$Q_{s}$') ax_m3s_sed.set_ylabel('[m$^3$/s]') ax_m3s_sed.legend(loc=2) @@ -314,11 +255,14 @@ def plot_state(step, time, S_, S_max_, title=True): else: plt.savefig('chan-' + str(step) + '.pdf') plt.clf() + plt.close() -def find_new_timestep(ds, Q, S): +def find_new_timestep(ds, Q, Q_s, S): # Determine the timestep using the Courant-Friedrichs-Lewy condition - dt = safety*numpy.minimum(60.*60.*24., numpy.min(numpy.abs(ds/(Q*S)))) + dt = safety*numpy.minimum(60.*60.*24., + numpy.min(numpy.abs(ds/(Q*S), + ds/(Q_s*S)+1e-16))) if dt < 1.0: raise Exception('Error: Time step less than 1 second at step ' @@ -334,6 +278,8 @@ def print_status_to_stdout(step, time, dt): .format(time, time/(60.*60.*24.), dt)) sys.stdout.flush() + +# Initialize remaining values before entering time loop s_c = avg_midpoint(s) # Channel section midpoint coordinates [m] H_c = avg_midpoint(H) @@ -351,7 +297,7 @@ step = 0 while time <= t_end: # Determine time step length from water flux - dt = find_new_timestep(ds, Q, S) + dt = find_new_timestep(ds, Q, Q_s, S) # Display current simulation status print_status_to_stdout(step, time, dt) @@ -363,10 +309,8 @@ while time <= t_end: max_res = 1e9 S_old = S.copy() - # Iteratively find solution, do not settle for less iterations than the - # number of nodes to make sure information has had a chance to pass through - # the system - while max_res > tol_Q or it < Ns: + # Iteratively find solution with the Jacobi relaxation method + while max_res > tol_S: S_prev_it = S.copy() @@ -377,23 +321,21 @@ while time <= t_end: # Find average shear stress from water flux for each channel segment tau = channel_shear_stress(Q, S) - # Determine sediment fluxes for each size fraction - f_g = 1./f_s # gravel volume fraction is reciprocal to sand - Q_s = channel_sediment_flux_sand(tau, W, f_s, D_s) - Q_g = channel_sediment_flux_gravel(tau, W, f_g, D_g) - Q_t = Q_s + Q_g + # Determine sediment flux + Q_s = channel_sediment_flux(tau, W) # Determine change in channel size for each channel segment. # Use backward differences and assume dS/dt=0 in first segment. - #dSdt[1:] = channel_growth_rate_sedflux(Q_t, porosity, s_c) - #dSdt *= speedup_factor + dSdt[1:] = channel_growth_rate_sedflux(Q_s, porosity, s_c) + # dSdt *= speedup_factor * relax # Update channel cross-sectional area and width according to growth # rate and size limit for each channel segment + # S_prev = S.copy() S, W, S_max, dSdt = \ update_channel_size_with_limit(S, S_old, dSdt, dt, N_c) + # S = S_prev*(1.0 - relax) + S*relax - # Find hydraulic roughness f = channel_hydraulic_roughness(manning, S, W, theta) # Find new water pressures consistent with the flow law @@ -402,6 +344,9 @@ while time <= t_end: # Find new effective pressure in channel segments P_c = rho_i*g*H_c - N_c + if plot_during_iterations: + plot_state(step + it/1e4, time, S, S_max) + # Find new maximum normalized residual value max_res = numpy.max(numpy.abs((S - S_prev_it)/(S + 1e-16))) if print_output_convergence_main: