manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit 156ae779f40f1f2c32106bf78f3eb7d29f746b12
parent 5d35bcab717193c3b009c9ac8c525a33fafa8c6b
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Wed, 26 Jun 2019 13:15:00 +0200

Add skin depth solution

Diffstat:
MBIBnew.bib | 9+++++++++
Mcontinuum-granular-manuscript1.tex | 10++++++++++
2 files changed, 19 insertions(+), 0 deletions(-)

diff --git a/BIBnew.bib b/BIBnew.bib @@ -8816,3 +8816,12 @@ Winton and A. T. Wittenberg and F. Zeng and R. Zhang and J. P. Dunne}, title = {A theory of glacial quarrying for landscape evolution models}, journal = {Geology} } + +@book{Turcotte2002, + doi = {10.1017/cbo9780511807442.012}, + year=2002, + publisher = {Cambridge University Press, Cambridge}, + pages = {848}, + author = {D. L. Turcotte and G. Schubert}, + title = {Geodynamics}, +} diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -147,6 +147,16 @@ The method is unconditionally stable and second-order accurate in time and space \section{Results}% \label{sec:results} +The water pressure variations vary with the same periodocity as the forcing, but with exponential decay in amplitude and increasing lag at depth. +The skin depth is defined as the distance where the fluctuation amplitude decreases to $1/e$ of its surface value. +As long as fluid and diffusion properties are constant, + an analytical solution to skin depth in our system follows the form \citep[after Eq. 4.90 in][]{Turcotte2002}, +\begin{equation} + d_\text{s} = \left( \frac{k}{\phi\mu_\text{f}\beta_\text{f}\pi f} \right)^{1/2} + \label{eq:skin_depth} +\end{equation} +The above relation implies that the amplitude in water-pressure forcing does not influence the maximum depth of slip. + \begin{figure}[htbp] \begin{center} \includegraphics[width=7.5cm]{experiments/fig1.pdf}