manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit 215521adeec48458e93e0effcb3f4076ddf3bcfb
parent daaeed6425e9fa564b2a725d635d25d539420044
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Fri,  4 Oct 2019 20:30:38 +0200

Work on intro

Diffstat:
MBIBnew.bib | 30+++++++++++++++++++++++-------
MMakefile | 60++++++++++++++++++++++++++++++------------------------------
Mcontinuum-granular-manuscript1.tex | 25++++++++++++-------------
Mexperiments/fig1.pdf | 0
Mexperiments/fig2.pdf | 0
Mexperiments/fig3.pdf | 0
Mexperiments/fig4.pdf | 0
Mexperiments/fig6.pdf | 0
Mexperiments/fig8.pdf | 0
9 files changed, 65 insertions(+), 50 deletions(-)

diff --git a/BIBnew.bib b/BIBnew.bib @@ -11,13 +11,14 @@ } @article{Fricker2016, - title={A decade of progress in observing and modelling {A}ntarctic subglacial water systems}, - author={Fricker, H. A. and Siegfried, M. R. and Carter, S. P. and Scambos, T. A.}, - journal={Phil. Trans. R. Soc. A}, - volume={374}, - number={2059}, - pages={20140294}, - year={2016}, + title={A decade of progress in observing and modelling {A}ntarctic subglacial water systems}, + author={Fricker, H. A. and Siegfried, M. R. and Carter, S. P. and Scambos, T. + A.}, + journal={Phil. Trans. R. Soc. A}, + volume={374}, + number={2059}, + pages={20140294}, + year={2016}, } @Article{Aharonov2002, @@ -9084,3 +9085,17 @@ Winton and A. T. Wittenberg and F. Zeng and R. Zhang and J. P. Dunne}, title = {Numerical modelling of subglacial erosion and sediment transport and its application to the North American ice sheets over the Last Glacial cycle}, journal = {Quat. Sci. Rev.} } + +@article{Parizek2013, + doi = {10.1002/jgrf.20044}, + url = {https://doi.org/10.1002%2Fjgrf.20044}, + year = 2013, + month = {may}, + publisher = {American Geophysical Union ({AGU})}, + volume = {118}, + number = {2}, + pages = {638--655}, + author = {B. R. Parizek and K. Christianson and S. Anandakrishnan and R. B. Alley and R. T. Walker and R. A. Edwards and D. S. Wolfe and G. T. Bertini and S. K. Rinehart and R. A. Bindschadler and S. M. J. Nowicki}, + title = {Dynamic (in)stability of Thwaites Glacier, West Antarctica}, + journal = {J. Geophys. Res.: Earth Surf.} +}+ \ No newline at end of file diff --git a/Makefile b/Makefile @@ -21,33 +21,33 @@ BIBnew.bib: $(NAME).tex cp ~/articles/own/BIBnew.bib $@ clean: - @$(RM) $(NAME).pdf - @$(RM) *.aux - @$(RM) $(NAME).glo - @$(RM) $(NAME).idx - @$(RM) $(NAME).log - @$(RM) $(NAME).toc - @$(RM) $(NAME).ist - @$(RM) $(NAME).acn - @$(RM) $(NAME).acr - @$(RM) $(NAME).alg - @$(RM) $(NAME).bbl - @$(RM) $(NAME).blg - @$(RM) $(NAME).dvi - @$(RM) $(NAME).glg - @$(RM) $(NAME).gls - @$(RM) $(NAME).ilg - @$(RM) $(NAME).ind - @$(RM) $(NAME).lof - @$(RM) $(NAME).lot - @$(RM) $(NAME).maf - @$(RM) $(NAME).mtc - @$(RM) $(NAME).mtc1 - @$(RM) $(NAME).out - @$(RM) $(NAME).synctex.gz - @$(RM) $(NAME).fdb_latexmk - @$(RM) $(NAME).fls - @$(RM) $(NAME).xdy - @$(RM) $(NAME)-blx.bib - @$(RM) $(NAME).run.xml - @$(RM) BIBnew.bib + @$rm -f $(NAME).pdf + @$rm -f *.aux + @$rm -f $(NAME).glo + @$rm -f $(NAME).idx + @$rm -f $(NAME).log + @$rm -f $(NAME).toc + @$rm -f $(NAME).ist + @$rm -f $(NAME).acn + @$rm -f $(NAME).acr + @$rm -f $(NAME).alg + @$rm -f $(NAME).bbl + @$rm -f $(NAME).blg + @$rm -f $(NAME).dvi + @$rm -f $(NAME).glg + @$rm -f $(NAME).gls + @$rm -f $(NAME).ilg + @$rm -f $(NAME).ind + @$rm -f $(NAME).lof + @$rm -f $(NAME).lot + @$rm -f $(NAME).maf + @$rm -f $(NAME).mtc + @$rm -f $(NAME).mtc1 + @$rm -f $(NAME).out + @$rm -f $(NAME).synctex.gz + @$rm -f $(NAME).fdb_latexmk + @$rm -f $(NAME).fls + @$rm -f $(NAME).xdy + @$rm -f $(NAME)-blx.bib + @$rm -f $(NAME).run.xml + @$rm -f BIBnew.bib diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -50,11 +50,19 @@ We show that past pulses in water pressure can transfer shear away from the ice- \section{Introduction}% \label{sec:introduction} Subglacial sediment deformation is in many settings of primary importance to glacier flow \citep[e.g.][]{Boulton1974, Engelhardt1990, Fischer1994, Truffer2006}. -The mechanical behavior of the sediment is long debated \citep[e.g.][]{Alley1986, Boulton1987, Kamb1991, Iverson1995, Hindmarsh1997, Hooke1997, Fowler2003, Kavanaugh2006, Iverson2010, Hart2011}. +The rheology of the sediment is long debated \citep[e.g.][]{Alley1986, Boulton1987, Kamb1991, Iverson1995, Hindmarsh1997, Hooke1997, Fowler2003, Kavanaugh2006, Iverson2010, Hart2011}. +There are several reasons for the long-standing debate. +For considerations of till erosion, transport, and deposition, it is necessary to be able to quantify the strain distribution inside the sediment as the glacier flow shears it from above. + +If subglacial sediment movement is modeled analytical and numerical modeling, it requires unique links between stress and strain rate. + +Till continuity (Alley and Cuffey). +Landform development (Hindmarsh, Fowler, Schoof). + + Early on, till was assumed to be viscous \citep{Boulton1987} which allowed the formulation of analytical solutions to the coupled ice-till problem \citep[e.g.][]{Walder1994, Hindmarsh1999, Fowler2000}. Viscous materials loose all strength if deformation rates approach zero, and strength is without an upper bound as rates increase. Resultant glacier sliding laws are similar to hard-bed sliding laws without cavitation \citep[e.g.][]{Budd1979}. -Traditional analytical and numerical modeling of till requires that stress and strain rate is linked, with linear to mildly non-linear rheologies being vastly simpler to solve. However, laboratory experiments on tills \citep[e.g.][]{Kamb1991, Iverson1998, Tulaczyk2000, Rathbun2008, Iverson2010, Iverson2015} and field observations \citep[e.g.][]{Iverson1995, Hooke1997, Tulaczyk2006} have concluded that till strength is nearly independent of deformation rate, and behaves according to Mohr-Coulomb plasticity. Beneath the Mohr-Coulomb yield strength there can be slight creep with a highly-nonlinear rate dependence \citep[e.g.][]{Kamb1991, Damsgaard2016, Hart2019}. @@ -67,11 +75,6 @@ The degree of non-linearity may pose drastically different contributions to glob % Damsgaard2013 -% Damsgaard2016 - -% Kavanaugh - -% Joughin2010 % Tsai, Schoof @@ -79,14 +82,10 @@ The \emph{undrained plastic-bed} model by \citet{Tulaczyk2000b} uses the relatio This parameterization has been included in ice sheet models, successfully reproducing transient flow dynamics \citep{Bougamont2011, vanDerWel2013, Gillet-Chaulet2016, Bougamont2019}. \citet{Schoof2010} produced a reguralized form of the Coulomb friction sliding law, making it feasible to simulate sliding over plastic tills in ice-sheet models. -However, - - -\citet{Iverson2001} demonstrated that perturbations in effective stress at depth can distribute deformation away from the ice-bed interface. +However, the parameterization does not describe how sediment is advected during shear, but exclusively describes the friction at the ice-bed interface. -% Tarasov? -\citep{Melanson2013}. +%\citet{Iverson2001} demonstrated that perturbations in effective stress at depth can distribute deformation away from the ice-bed interface. diff --git a/experiments/fig1.pdf b/experiments/fig1.pdf Binary files differ. diff --git a/experiments/fig2.pdf b/experiments/fig2.pdf Binary files differ. diff --git a/experiments/fig3.pdf b/experiments/fig3.pdf Binary files differ. diff --git a/experiments/fig4.pdf b/experiments/fig4.pdf Binary files differ. diff --git a/experiments/fig6.pdf b/experiments/fig6.pdf Binary files differ. diff --git a/experiments/fig8.pdf b/experiments/fig8.pdf Binary files differ.