manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs Back to index

commit 559fa2b257fa7f084d5d7dd27748d14a3ac69259
parent 65fe096466dbcd95c90995f14c175d197df5ee66
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Thu, 12 Dec 2019 18:20:54 +0100

Update figures and si

Diffstat:
Mexperiments/fig-pulse_lag.pdf | 0
Mexperiments/fig-skin_depth.pdf | 0
Msi.tex | 27+++++++++++++++++++++------
3 files changed, 21 insertions(+), 6 deletions(-)

diff --git a/experiments/fig-pulse_lag.pdf b/experiments/fig-pulse_lag.pdf Binary files differ. diff --git a/experiments/fig-skin_depth.pdf b/experiments/fig-skin_depth.pdf Binary files differ. diff --git a/si.tex b/si.tex @@ -319,7 +319,7 @@ Here, $z'$ is depth below the ice-bed interface, i.e.\ $z' = L_z - z$. \sigma_\mathrm{n}'(z',t) = \sigma_\mathrm{n} - + (\rho_\mathrm{s} - \rho_\mathrm{f}) G z' % 1-phi here? + + (\rho_\mathrm{s} - \rho_\mathrm{f}) G z' - p_\mathrm{f,top} - A_\mathrm{f} \exp \left( - \frac{z'}{d_\mathrm{s}} \right) \sin \left( \omega t - \frac{z'}{d_\mathrm{s}} \right) @@ -330,7 +330,7 @@ Here, $z'$ is depth below the ice-bed interface, i.e.\ $z' = L_z - z$. \begin{equation} \frac{d\sigma_\mathrm{n}'}{dz'}(z',t) = - (\rho_\mathrm{s} - \rho_\mathrm{f}) G % 1-phi here? + (\rho_\mathrm{s} - \rho_\mathrm{f}) G %- p_\mathrm{f,top} + \frac{A_\mathrm{f}}{d_\mathrm{s}} \exp \left( - \frac{z'}{d_\mathrm{s}} \right) \left[ \sin \left( \omega t - \frac{z'}{d_\mathrm{s}} \right) @@ -339,19 +339,34 @@ Here, $z'$ is depth below the ice-bed interface, i.e.\ $z' = L_z - z$. \end{linenomath*} We would like to find the depth $z'$ where $d\sigma_\mathrm{n}'/dz' = 0$. At that depth the effective normal stress is at a minimum and deep deformation can occur. In our simulations we observe that the deepest deformation occurs when water pressure is at its minimum at the ice-bed interface, which means that $t=3\pi/2\omega$: +%\begin{linenomath*} +%\begin{equation} +% \sin \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) +% + \cos \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) +% = +% - \frac{(\rho_\mathrm{s} - \rho_\mathrm{f}) G d_\mathrm{s}}{A_\mathrm{f}} +% \exp \left( \frac{z'}{d_\mathrm{s}} \right) +%\end{equation} +%\end{linenomath*} \begin{linenomath*} \begin{equation} + 0 = \sin \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) + \cos \left( \frac{3\pi}{2} - \frac{z'}{d_\mathrm{s}} \right) - = - - \frac{(\rho_\mathrm{s} - \rho_\mathrm{s}) G d_\mathrm{s}}{A_\mathrm{f}} - - \exp \left( \frac{z'}{d_\mathrm{s}} \right) + + \frac{(\rho_\mathrm{s} - \rho_\mathrm{f}) G d_\mathrm{s}}{A_\mathrm{f}} + \exp \left( \frac{z'}{d_\mathrm{s}} \right) \end{equation} \end{linenomath*} +With sinusoidal water-pressure forcing, the above equation has no solution if $d\sigma_\mathrm{n}'/dz(z=0) > 0$. +This can be the case if the pressure perturbation is too weak to reverse the effective normal stress curve at depth. +As a result, shear deformation occurs at the top throughout the water-pressure cycle. -\clearpage{} +We use Brent's method \cite{Press2007} for numerically finding depth ($z'$) values that satisfy the above equation within $z' \in [0; 5d_s]$. +Our implementation, the program \texttt{max\_depth\_simple\_shear}, takes command-line arguments of the same format as the main NGF program, \texttt{1d\_fd\_simple\_shear}, and prints the maximum deformation depth ($z'$) as the first column of output, and the skin depth ($d_\mathrm{s}$) as the second column. +See "\texttt{max\_depth\_simple\_shear -h}" for usage details. +\clearpage{} %\noindent\textbf{Data Set S1.} %Type or paste caption here. %upload your dataset(s) to AGU's journal submission site and select "Supporting Information (SI)" as the file type. Following naming %convention: ds01.