manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit f647c74f68d9feff3da7a34d86586529bf7b7a89
parent d3e3eeab13f3d16f87b2c5c7bc4e806f2848d810
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Tue, 25 Jun 2019 09:11:38 +0200

Rearrange solution to pore-pressure diffusion equation

Diffstat:
Mcontinuum-granular-manuscript1.tex | 6+++---
1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -133,11 +133,11 @@ The pore-pressure solution (Eq.~\ref{eq:p_f}) is constrained by a zero pressure Here, $A$ is the forcing amplitude [Pa], $f$ is the forcing frequency [1/s], and $p_{\text{f},0}$ is the mean pore pressure over time [Pa]. As for the granular flow solution, we also use operator splitting and finite differences to solve the equation for pore-pressure diffusion (Eq.~\ref{eq:p_f}): \begin{equation} - \Delta p_{\text{f},i} = \frac{\Delta t}{\phi_i \mu_\text{f} \beta_\text{f}} - \frac{1}{\Delta z} + \Delta p_{\text{f},i} = \frac{1}{\phi_i \mu_\text{f} \beta_\text{f}} + \frac{\Delta t}{\Delta z} \left( \frac{2 k_{i+1} k_i}{k_{i+1} + k_i} \frac{p_{i+1} - p_i}{\Delta z} - - \frac{2 k_{i-1} k_i}{k_{i-1} + k_i} \frac{p_i - p_{i-1}}{\Delta z} + \frac{2 k_i k_{i-1}}{k_i + k_{i-1}} \frac{p_i - p_{i-1}}{\Delta z} \right). \label{eq:p_f_solution} \end{equation}