manus_continuum_granular1

manuscript files for first continuum-till paper
git clone git://src.adamsgaard.dk/manus_continuum_granular1
Log | Files | Refs

commit 4b45b2c20ee90c421e248df474d70892c3490039
parent a05860a75cc642137e6ff9727498f1a35bbe42f8
Author: Anders Damsgaard <anders@adamsgaard.dk>
Date:   Mon, 22 Jul 2019 12:18:14 +0200

Begin adding limitations

Diffstat:
MBIBnew.bib | 134++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-----
Mcontinuum-granular-manuscript1.tex | 26++++++++++++++++++++------
2 files changed, 146 insertions(+), 14 deletions(-)

diff --git a/BIBnew.bib b/BIBnew.bib @@ -3932,7 +3932,6 @@ @article{Iverson1995, doi = {10.1126/science.267.5194.80}, - url = {https://doi.org/10.1126%2Fscience.267.5194.80}, year = 1995, month = {jan}, publisher = {American Association for the Advancement of Science ({AAAS})}, @@ -6267,7 +6266,6 @@ number = {8}, publisher = {John Wiley & Sons, Ltd}, issn = {1096-9837}, - url = {http://dx.doi.org/10.1002/esp.2138}, doi = {10.1002/esp.2138}, pages = {1105--1112}, keywords = {ribbed moraine, instability model, numerical computation}, @@ -8735,7 +8733,6 @@ Winton and A. T. Wittenberg and F. Zeng and R. Zhang and J. P. Dunne}, @article{Ugelvig2018, doi = {10.1016/j.epsl.2018.03.022}, - url = {https://doi.org/10.1016%2Fj.epsl.2018.03.022}, year = 2018, month = {may}, publisher = {Elsevier {BV}}, @@ -8747,7 +8744,6 @@ Winton and A. T. Wittenberg and F. Zeng and R. Zhang and J. P. Dunne}, } @article{Hermanowski2019, doi = {10.1002/esp.4630}, - url = {https://doi.org/10.1002%2Fesp.4630}, year = 2019, month = {apr}, publisher = {Wiley}, @@ -8757,7 +8753,6 @@ Winton and A. T. Wittenberg and F. Zeng and R. Zhang and J. P. Dunne}, } @article{Iverson2017, doi = {10.1016/j.geomorph.2017.10.005}, - url = {https://doi.org/10.1016%2Fj.geomorph.2017.10.005}, year = 2017, month = {dec}, publisher = {Elsevier {BV}}, @@ -8781,7 +8776,6 @@ Winton and A. T. Wittenberg and F. Zeng and R. Zhang and J. P. Dunne}, @incollection{Roux1998, doi = {10.1007/978-94-017-2653-5_13}, - url = {https://doi.org/10.1007%2F978-94-017-2653-5_13}, year = 1998, publisher = {Springer Netherlands}, pages = {229--236}, @@ -8792,7 +8786,6 @@ Winton and A. T. Wittenberg and F. Zeng and R. Zhang and J. P. Dunne}, @article{Pouliquen2006, doi = {10.1088/1742-5468/2006/07/p07020}, - url = {https://doi.org/10.1088%2F1742-5468%2F2006%2F07%2Fp07020}, year = 2006, publisher = {{IOP} Publishing}, volume = {2006}, @@ -8805,7 +8798,6 @@ Winton and A. T. Wittenberg and F. Zeng and R. Zhang and J. P. Dunne}, @article{Iverson2012, doi = {10.1130/g33079.1}, - url = {https://doi.org/10.1130%2Fg33079.1}, year = 2012, month = {aug}, publisher = {Geological Society of America}, @@ -8838,3 +8830,129 @@ Winton and A. T. Wittenberg and F. Zeng and R. Zhang and J. P. Dunne}, title = {A finite element implementation of the nonlocal granular rheology}, journal = {Int. J. Num. Meth. Eng.} } + +@article{Evans2010, + doi = {10.1002/nag.877}, + year = 2010, + publisher = {Wiley}, + pages = {n/a--n/a}, + author = {T. M. Evans and J. D. Frost}, + title = {Multiscale investigation of shear bands in sand: Physical and numerical experiments}, + journal = {Int. J. Numer. Anal. Meth. Geomech.} +} +@article{Pellitero2016, + doi = {10.1016/j.cageo.2016.06.008}, + year = 2016, + month = {sep}, + publisher = {Elsevier {BV}}, + volume = {94}, + pages = {77--85}, + author = {R. Pellitero and B. R. Rea and M. Spagnolo and J. Bakke and S. Ivy-Ochs and C. R. Frew and P. Hughes and A. Ribolini and S. Lukas and H. Renssen}, + title = {{GlaRe}, a {GIS} tool to reconstruct the 3D surface of palaeoglaciers}, + journal = {Comput. {\&} Geosci.} +} + +@article{Kirchner2016, + doi = {10.1016/j.quascirev.2016.01.013}, + year = 2016, + month = {mar}, + publisher = {Elsevier {BV}}, + volume = {135}, + pages = {103--114}, + author = {N. Kirchner and J. Ahlkrona and E.J. Gowan and P. Lötstedt and J.M. Lea and R. Noormets and L. von Sydow and J.A. Dowdeswell and T. Benham}, + title = {Shallow ice approximation, second order shallow ice approximation, and full Stokes models: A discussion of their roles in palaeo-ice sheet modelling and development}, + journal = {Quat. Sci. Rev.} +} +@article{Locke1995, + doi = {10.1016/0169-555x(95)00053-5}, + year = 1995, + month = {nov}, + publisher = {Elsevier {BV}}, + volume = {14}, + number = {2}, + pages = {123--130}, + author = {W. W. Locke}, + title = {{Modelling of icecap glaciation of the northern Rocky Mountains of Montana}}, + journal = {Geomorphology} +} + +@article{Pelletier2010, + doi = {10.1016/j.geomorph.2009.10.018}, + year = 2010, + month = {mar}, + publisher = {Elsevier {BV}}, + volume = {116}, + number = {1-2}, + pages = {189--201}, + author = {J. D. Pelletier and D. Comeau and J. Kargel}, + title = {Controls of glacial valley spacing on earth and mars}, + journal = {Geomorphology} +} +@article{Egholm2011, + doi = {10.1029/2010jf001900}, + year = 2011, + month = {may}, + publisher = {American Geophysical Union ({AGU})}, + volume = {116}, + number = {F2}, + author = {D. L. Egholm and M. F. Knudsen and C. D. Clark and J. E. Lesemann}, + title = {Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation ({iSOSIA})}, + journal = {J. Geophys. Res.: Earth Surf.} +} +@article{Hindmarsh2004, + doi = {10.1029/2003jf000065}, + year = 2004, + month = {mar}, + publisher = {American Geophysical Union ({AGU})}, + volume = {109}, + number = {F1}, + author = {R. C. A. Hindmarsh}, + title = {A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling}, + journal = {J. Geophys. Res.: Earth Surf.} +} +@article{Cohen2000, + doi = {10.3189/172756500781832747}, + year = 2000, + publisher = {Cambridge University Press ({CUP})}, + volume = {46}, + number = {155}, + pages = {599--610}, + author = {D. Cohen and R. LeB. Hooke and N. R. Iverson and J. Kohler}, + title = {Sliding of ice past an obstacle at Engabreen, Norway}, + journal = {J. Glaciol.} +} +@article{Benn2010, + doi = {10.1016/j.cageo.2009.09.016}, + year = 2010, + month = {may}, + publisher = {Elsevier {BV}}, + volume = {36}, + number = {5}, + pages = {605--610}, + author = {D. I. Benn and N. R.J. Hulton}, + title = {An {ExcelTM} spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps}, + journal = {Comput. {\&} Geosci.s} +} +@article{Braedstrup2016, + doi = {10.5194/esurf-4-159-2016}, + year = 2016, + month = {feb}, + publisher = {Copernicus {GmbH}}, + volume = {4}, + number = {1}, + pages = {159--174}, + author = {C. F. Br\ae{}dstrup and D. L. Egholm and S. V. Ugelvig and V. K. Pedersen}, + title = {Basal shear stress under alpine glaciers: insights from experiments using the {iSOSIA} and Elmer/Ice models}, + journal = {Earth Surf. Dynamics} +} + +@article{Iverson2000, + doi={10.1126/science.290.5491.513}, + year={2000}, + author={Iverson, R. M. and Reid, M. E. and Iverson, N. R. and LaHusen, R. G. and Lo- gan, M. and Mann, J. E. and Brien, D. L.} + volume={290}, + number=5491, + pages={513-–516}, + title={Acute sensitivity of landslide rates to initial soil porosity}, + journal={Science}, +} diff --git a/continuum-granular-manuscript1.tex b/continuum-granular-manuscript1.tex @@ -77,7 +77,9 @@ The local fluidity is defined as: \label{eq:g_local} \end{equation} where $d$ [m] is the representative grain diameter, $\mu_\text{s}$ [-] is the static Coulomb yield coefficient, $C$ [Pa] is the material cohesion, and $b$ [-] is the non-linear rate dependence beyond yield. -For steady flow the non-locality is determined by a Poisson-type equation where strain is spread in space, as scaled by the cooperativity length $\xi$: +The failure point is determined by the Mohr-Coulomb constituent relation. +Beyond failure, the flow is governed by a Poisson-type equation that distributes strain in space according to material properties and stress state. +The flow non-locality is summarized by the cooperativity length $\xi$: \begin{equation} \nabla^2 g = \frac{1}{\xi^2(\mu)} (g - g_\text{local}), \label{eq:g} @@ -88,7 +90,7 @@ where \label{eq:cooperativity} \end{equation} The non-locality scales with nonlocal amplitude $A$ [-]. -It is worth noting that the above formulation distributes strain in space based on material properties and stress, as observed in simple granular materials \citep[e.g.][]{Damsgaard2013}. +In the above mathematical framework, the material slightly strengthens when the shear zone size is restricted by thickness of the granular bed. \subsection{Fluid-pressure evolution}% \label{sub:fluid_pressure_evolution} @@ -101,13 +103,24 @@ where $\mu_\text{f}$ denotes dynamic fluid viscosity [Pa s], $\beta_\text{f}$ is The sediment is assumed to be in the critical state throughout the domain, as in the original formulation by \citet{Henann2013}. The fluid pressure is used to determine the effective normal stress used in the granular flow calculations (Eq.~\ref{eq:shear_strain_rate} and~\ref{eq:g_local}). +\subsection{Limitations of the continuum model}% +\label{sub:limitations_of_the_continuum_model} +The presented model considers the material to be in the critical (steady) state throughout the domain. +Consequently, porosity is prescribed as a constant and material-specific parameter. +For that reason the model is not able to simulate uniaxial compaction or shear-induced dilation \citep[e.g.][]{Iverson2000, Iverson2010-2, Damsgaard2015} or compaction \citep[e.g.][]{Dewhurst1996}. +A transient granular model with state-dependent porosity is currently under development. + +The strain distribution is in the presented model dependent on the representative grain size $d$. +However, it is uncomfortable to describe the grain size distribution with a single value for diamictons such as most subglacial tills \citep[e.g.][]{Hooke1995}. +Future research will investigate how wide grain-size distributions affect strain distribution. + + \subsection{Numerical solution procedure}% \label{sub:numerical_solution_procedure} -These parameters do not change over the course of a simulation, and are kept constant everywhere in the domain where the material is of identical origin. - -The above formulation is applicable to any spatial dimensionality, for the purposes of this study we apply it in a 1D spatial reference system. -Shear deformation is restricted to occur in horizontal (x) shear zones. +The presented formulation is applicable to any spatial dimensionality. +For the purposes of this study we apply it in a 1D spatial reference system. The axis $z$ is pointed upwards with a domain length of $L_z$. +Shear deformation is restricted to occur in horizontal (x) shear zones. We assign depth coordinates $z_i$ and fluidity $g_i$ to a regular grid with ghost nodes and cell spacing $\Delta z$. The normal stress is assumed to increase with depth due to lithostatic pressure from the overburden ($\sigma_\text{n}(z) = \int^{z'=L_z}_{z'=z} \rho_\text{s} \phi G dz' + \sigma_\text{n,t}$), where G is the magnitude of gravitational acceleration and $\sigma_\text{n,t}$ is the normal stress applied on the top of the domain. @@ -310,6 +323,7 @@ The stick-slip experiments (Fig.~\ref{fig:stick_slip} to~\ref{fig:stick_slip_dep Practically all of the shear strain through a perturbation cycle occurs above the skin depth (magenta line in Fig.~\ref{fig:stick_slip_depth}). + \section{Conclusion}% \label{sec:conclusion}